Question
Exorcifo 1.14 You may have to rearrange and group the terms. Check some of your answers by multiplying the factors. Try to find more than one way of grouping for some of the questions. Factorise. \( \begin{array}{ll}\text { a) } a^{2}-b^{2}+a-b & \text { b) } p^{2}+p-q^{2}-q \\ \text { c) } 4 x^{2}+2 x-9 y^{2}+3 y & \text { d) } 5 a^{2} b^{2}-4 b^{4}+25 a^{4} b^{4}-2 b^{2} \\ \text { e) } 3 a^{2}-2 b-3 b^{2}+2 a & \text { f) } x^{3}-4 x y^{2}+x y-2 y^{2}\end{array} \)
Ask by Dunn Mcguire. in South Africa
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
Here are the factorizations for each expression:
a) \( a^{2} - b^{2} + a - b = (a + b + 1)(a - b) \)
b) \( p^{2} + p - q^{2} - q = (p + q + 1)(p - q) \)
c) \( 4x^{2} + 2x - 9y^{2} + 3y = (2x + 3y)(2x - 3y + 1) \)
d) \( 5a^{2}b^{2} - 4b^{4} + 25a^{4}b^{4} - 2b^{2} = b^{2}(5a^{2}b^{2} + 2b^{2} + 1)(5a^{2} - 2) \)
e) \( 3a^{2} - 2b - 3b^{2} + 2a = (3a + 3b + 2)(a - b) \)
f) \( x^{3} - 4xy^{2} + xy - 2y^{2} = (x^{2} + 2xy + y)(x - 2y) \)
These factorizations can be verified by multiplying the factors back together to ensure they match the original expressions.
Solution
Factor the expression by following steps:
- step0: Factor:
\(a^{2}-b^{2}+a-b\)
- step1: Rewrite the expression:
\(a^{2}-ab+ba-b^{2}+a-b\)
- step2: Factor the expression:
\(a\left(a-b\right)+b\left(a-b\right)+a-b\)
- step3: Factor the expression:
\(\left(a+b+1\right)\left(a-b\right)\)
Factor the expression \( 4 x^{2}+2 x-9 y^{2}+3 y \).
Factor the expression by following steps:
- step0: Factor:
\(4x^{2}+2x-9y^{2}+3y\)
- step1: Rewrite the expression:
\(4x^{2}-6xy+2x+6yx-9y^{2}+3y\)
- step2: Factor the expression:
\(2x\left(2x-3y+1\right)+3y\left(2x-3y+1\right)\)
- step3: Factor the expression:
\(\left(2x+3y\right)\left(2x-3y+1\right)\)
Factor the expression \( 3 a^{2}-2 b-3 b^{2}+2 a \).
Factor the expression by following steps:
- step0: Factor:
\(3a^{2}-2b-3b^{2}+2a\)
- step1: Rewrite the expression:
\(3a^{2}-3ab+3ba-3b^{2}+2a-2b\)
- step2: Factor the expression:
\(3a\left(a-b\right)+3b\left(a-b\right)+2\left(a-b\right)\)
- step3: Factor the expression:
\(\left(3a+3b+2\right)\left(a-b\right)\)
Factor the expression \( x^{3}-4 x y^{2}+x y-2 y^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(x^{3}-4xy^{2}+xy-2y^{2}\)
- step1: Rewrite the expression:
\(x^{3}-2x^{2}y+2x^{2}y-4xy^{2}+yx-2y^{2}\)
- step2: Factor the expression:
\(x^{2}\left(x-2y\right)+2xy\left(x-2y\right)+y\left(x-2y\right)\)
- step3: Factor the expression:
\(\left(x^{2}+2xy+y\right)\left(x-2y\right)\)
Factor the expression \( p^{2}+p-q^{2}-q \).
Factor the expression by following steps:
- step0: Factor:
\(p^{2}+p-q^{2}-q\)
- step1: Rewrite the expression:
\(p^{2}-pq+qp-q^{2}+p-q\)
- step2: Factor the expression:
\(p\left(p-q\right)+q\left(p-q\right)+p-q\)
- step3: Factor the expression:
\(\left(p+q+1\right)\left(p-q\right)\)
Factor the expression \( 5 a^{2} b^{2}-4 b^{4}+25 a^{4} b^{4}-2 b^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(5a^{2}b^{2}-4b^{4}+25a^{4}b^{4}-2b^{2}\)
- step1: Evaluate:
\(25b^{4}a^{4}-4b^{4}+5b^{2}a^{2}-2b^{2}\)
- step2: Factor the expression:
\(b^{2}\left(25a^{4}b^{2}-4b^{2}+5a^{2}-2\right)\)
- step3: Factor the expression:
\(b^{2}\left(5a^{2}b^{2}+2b^{2}+1\right)\left(5a^{2}-2\right)\)
Here are the factorizations for each of the expressions provided:
### a) \( a^{2}-b^{2}+a-b \)
To factor this expression, we can rearrange and group the terms:
\[
a^{2} + a - b^{2} - b = (a + b + 1)(a - b)
\]
**Factorization:** \((a + b + 1)(a - b)\)
### b) \( p^{2}+p-q^{2}-q \)
Rearranging and grouping gives us:
\[
p^{2} + p - q^{2} - q = (p + q + 1)(p - q)
\]
**Factorization:** \((p + q + 1)(p - q)\)
### c) \( 4x^{2}+2x-9y^{2}+3y \)
Rearranging and grouping the terms:
\[
4x^{2} + 2x - 9y^{2} + 3y = (2x + 3y)(2x - 3y + 1)
\]
**Factorization:** \((2x + 3y)(2x - 3y + 1)\)
### d) \( 5a^{2}b^{2}-4b^{4}+25a^{4}b^{4}-2b^{2} \)
This expression can be factored as:
\[
5a^{2}b^{2} - 4b^{4} + 25a^{4}b^{4} - 2b^{2} = b^{2}(5a^{2}b^{2} + 2b^{2} + 1)(5a^{2} - 2)
\]
**Factorization:** \(b^{2}(5a^{2}b^{2} + 2b^{2} + 1)(5a^{2} - 2)\)
### e) \( 3a^{2}-2b-3b^{2}+2a \)
Rearranging and grouping gives:
\[
3a^{2} + 2a - 3b^{2} - 2b = (3a + 3b + 2)(a - b)
\]
**Factorization:** \((3a + 3b + 2)(a - b)\)
### f) \( x^{3}-4xy^{2}+xy-2y^{2} \)
Rearranging and grouping gives:
\[
x^{3} + xy - 4xy^{2} - 2y^{2} = (x^{2} + 2xy + y)(x - 2y)
\]
**Factorization:** \((x^{2} + 2xy + y)(x - 2y)\)
These factorizations can be verified by multiplying the factors back together to ensure they yield the original expressions.
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Bonus Knowledge
Let’s dive into the fun world of factorization! For part (a): \(a^2 - b^2 + a - b\) can be rearranged to \((a^2 + a) - (b^2 + b)\) which factors to \(a(a + 1) - b(b + 1)\). It can also be expressed as \((a - b)(a + b + 1)\) through grouping. For part (b): \(p^2 + p - q^2 - q\) can be nicely grouped as \((p^2 - q^2) + (p - q)\). By factoring, \(p^2 - q^2\) gives \((p - q)(p + q)\) and thus overall it's \((p - q)(p + q + 1)\). Keep those factorization skills sharp!