Question
upstudy study bank question image url

Exorcifo 1.14 You may have to rearrange and group the terms. Check some of your answers by multiplying the factors. Try to find more than one way of grouping for some of the questions. Factorise. \( \begin{array}{ll}\text { a) } a^{2}-b^{2}+a-b & \text { b) } p^{2}+p-q^{2}-q \\ \text { c) } 4 x^{2}+2 x-9 y^{2}+3 y & \text { d) } 5 a^{2} b^{2}-4 b^{4}+25 a^{4} b^{4}-2 b^{2} \\ \text { e) } 3 a^{2}-2 b-3 b^{2}+2 a & \text { f) } x^{3}-4 x y^{2}+x y-2 y^{2}\end{array} \)

Ask by Dunn Mcguire. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the factorizations for each expression: a) \( a^{2} - b^{2} + a - b = (a + b + 1)(a - b) \) b) \( p^{2} + p - q^{2} - q = (p + q + 1)(p - q) \) c) \( 4x^{2} + 2x - 9y^{2} + 3y = (2x + 3y)(2x - 3y + 1) \) d) \( 5a^{2}b^{2} - 4b^{4} + 25a^{4}b^{4} - 2b^{2} = b^{2}(5a^{2}b^{2} + 2b^{2} + 1)(5a^{2} - 2) \) e) \( 3a^{2} - 2b - 3b^{2} + 2a = (3a + 3b + 2)(a - b) \) f) \( x^{3} - 4xy^{2} + xy - 2y^{2} = (x^{2} + 2xy + y)(x - 2y) \) These factorizations can be verified by multiplying the factors back together to ensure they match the original expressions.

Solution

Factor the expression by following steps: - step0: Factor: \(a^{2}-b^{2}+a-b\) - step1: Rewrite the expression: \(a^{2}-ab+ba-b^{2}+a-b\) - step2: Factor the expression: \(a\left(a-b\right)+b\left(a-b\right)+a-b\) - step3: Factor the expression: \(\left(a+b+1\right)\left(a-b\right)\) Factor the expression \( 4 x^{2}+2 x-9 y^{2}+3 y \). Factor the expression by following steps: - step0: Factor: \(4x^{2}+2x-9y^{2}+3y\) - step1: Rewrite the expression: \(4x^{2}-6xy+2x+6yx-9y^{2}+3y\) - step2: Factor the expression: \(2x\left(2x-3y+1\right)+3y\left(2x-3y+1\right)\) - step3: Factor the expression: \(\left(2x+3y\right)\left(2x-3y+1\right)\) Factor the expression \( 3 a^{2}-2 b-3 b^{2}+2 a \). Factor the expression by following steps: - step0: Factor: \(3a^{2}-2b-3b^{2}+2a\) - step1: Rewrite the expression: \(3a^{2}-3ab+3ba-3b^{2}+2a-2b\) - step2: Factor the expression: \(3a\left(a-b\right)+3b\left(a-b\right)+2\left(a-b\right)\) - step3: Factor the expression: \(\left(3a+3b+2\right)\left(a-b\right)\) Factor the expression \( x^{3}-4 x y^{2}+x y-2 y^{2 \). Factor the expression by following steps: - step0: Factor: \(x^{3}-4xy^{2}+xy-2y^{2}\) - step1: Rewrite the expression: \(x^{3}-2x^{2}y+2x^{2}y-4xy^{2}+yx-2y^{2}\) - step2: Factor the expression: \(x^{2}\left(x-2y\right)+2xy\left(x-2y\right)+y\left(x-2y\right)\) - step3: Factor the expression: \(\left(x^{2}+2xy+y\right)\left(x-2y\right)\) Factor the expression \( p^{2}+p-q^{2}-q \). Factor the expression by following steps: - step0: Factor: \(p^{2}+p-q^{2}-q\) - step1: Rewrite the expression: \(p^{2}-pq+qp-q^{2}+p-q\) - step2: Factor the expression: \(p\left(p-q\right)+q\left(p-q\right)+p-q\) - step3: Factor the expression: \(\left(p+q+1\right)\left(p-q\right)\) Factor the expression \( 5 a^{2} b^{2}-4 b^{4}+25 a^{4} b^{4}-2 b^{2 \). Factor the expression by following steps: - step0: Factor: \(5a^{2}b^{2}-4b^{4}+25a^{4}b^{4}-2b^{2}\) - step1: Evaluate: \(25b^{4}a^{4}-4b^{4}+5b^{2}a^{2}-2b^{2}\) - step2: Factor the expression: \(b^{2}\left(25a^{4}b^{2}-4b^{2}+5a^{2}-2\right)\) - step3: Factor the expression: \(b^{2}\left(5a^{2}b^{2}+2b^{2}+1\right)\left(5a^{2}-2\right)\) Here are the factorizations for each of the expressions provided: ### a) \( a^{2}-b^{2}+a-b \) To factor this expression, we can rearrange and group the terms: \[ a^{2} + a - b^{2} - b = (a + b + 1)(a - b) \] **Factorization:** \((a + b + 1)(a - b)\) ### b) \( p^{2}+p-q^{2}-q \) Rearranging and grouping gives us: \[ p^{2} + p - q^{2} - q = (p + q + 1)(p - q) \] **Factorization:** \((p + q + 1)(p - q)\) ### c) \( 4x^{2}+2x-9y^{2}+3y \) Rearranging and grouping the terms: \[ 4x^{2} + 2x - 9y^{2} + 3y = (2x + 3y)(2x - 3y + 1) \] **Factorization:** \((2x + 3y)(2x - 3y + 1)\) ### d) \( 5a^{2}b^{2}-4b^{4}+25a^{4}b^{4}-2b^{2} \) This expression can be factored as: \[ 5a^{2}b^{2} - 4b^{4} + 25a^{4}b^{4} - 2b^{2} = b^{2}(5a^{2}b^{2} + 2b^{2} + 1)(5a^{2} - 2) \] **Factorization:** \(b^{2}(5a^{2}b^{2} + 2b^{2} + 1)(5a^{2} - 2)\) ### e) \( 3a^{2}-2b-3b^{2}+2a \) Rearranging and grouping gives: \[ 3a^{2} + 2a - 3b^{2} - 2b = (3a + 3b + 2)(a - b) \] **Factorization:** \((3a + 3b + 2)(a - b)\) ### f) \( x^{3}-4xy^{2}+xy-2y^{2} \) Rearranging and grouping gives: \[ x^{3} + xy - 4xy^{2} - 2y^{2} = (x^{2} + 2xy + y)(x - 2y) \] **Factorization:** \((x^{2} + 2xy + y)(x - 2y)\) These factorizations can be verified by multiplying the factors back together to ensure they yield the original expressions.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let’s dive into the fun world of factorization! For part (a): \(a^2 - b^2 + a - b\) can be rearranged to \((a^2 + a) - (b^2 + b)\) which factors to \(a(a + 1) - b(b + 1)\). It can also be expressed as \((a - b)(a + b + 1)\) through grouping. For part (b): \(p^2 + p - q^2 - q\) can be nicely grouped as \((p^2 - q^2) + (p - q)\). By factoring, \(p^2 - q^2\) gives \((p - q)(p + q)\) and thus overall it's \((p - q)(p + q + 1)\). Keep those factorization skills sharp!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy