Question
3. LOGARIFMIK TENGLAMALAR 11. \( \log _{x}(4 x-3)=2 \) tenglama ildizlari yig'indisini toping. A) 2 B) 3 C) 4 D) 5 \( 12 \log _{7}(2 x-5)=\log _{7}(x-3) \) tenglamani yeching. A) 0 B) 2 C) 3 D) 4 \( 13(x-2) \log _{3}\left(x^{2}-24\right)=0 \) tenglamaning haqiqiy ildizlari nechta? A) 0 B) 1 C) 2 D) 3 \( 14 \log _{2}(x-8)+\log _{3} 27=4 \) tenglama ildizi \( x_{0} \) bo'lsa, \( x_{0}+5 \) ning qiymatini toping. A) 10 B) 12 C) 15 D) 17
Ask by Barber Maxwell. in Russia
Jan 21,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
**Javoblar:**
11. **B) 3**
12. **A) 0**
13. **C) 2**
14. **C) 15**
Solution
Quyidagi logarifmik tenglamalarning yechimlarini ko'rib chiqamiz va to'g'ri javoblarni aniqlaymiz.
---
### **11. \( \log _{x}(4 x-3)=2 \) tenglama ildizlari yig'indisini toping.**
**Yechim:**
\[
\log_{x}(4x - 3) = 2 \implies x^2 = 4x - 3 \implies x^2 - 4x + 3 = 0
\]
Kvadrat tenglama ildizlari:
\[
x = \frac{4 \pm \sqrt{16 - 12}}{2} = \frac{4 \pm 2}{2} \implies x_1 = 3, \quad x_2 = 1
\]
**Tekshiruv:**
- \( x = 3 \): Logarifm asos \(3 > 0\) va \( \neq 1 \), argument \(4(3) - 3 = 9 > 0\). Qabul qilinadi.
- \( x = 1 \): Logarifm asos \(1\) bo'lishi mumkin emas. Rad etiladi.
**Natija:** Faqat \( x = 3 \) haqiqiy yechim.
**To'g'ri javob:** **B) 3**
---
### **12. \( 12 \log _{7}(2 x-5)=\log _{7}(x-3) \) tenglamani yeching.**
**Yechim:**
\[
12 \log_{7}(2x - 5) = \log_{7}(x - 3)
\]
\[
(2x - 5)^{12} = x - 3
\]
Bu tenglama uchun \( x > \frac{5}{2} \) va \( x > 3 \). Grafiklarni tahlil qilganda, chap tomonda \( (2x - 5)^{12} \) juda tez o'sadi va har doim \( x - 3 \) dan katta bo'ladi. Demak, haqiqatda hech qanday yechim mavjud emas.
**Natija:** Hech qanday yechim yo'q.
**To'g'ri javob:** **A) 0**
---
### **13. \( (x-2) \log _{3}\left(x^{2}-24\right)=0 \) tenglamaning haqiqiy ildizlari nechta?**
**Yechim:**
\[
(x - 2) \log_{3}(x^2 - 24) = 0
\]
Bu tenglama quyidagi hollarda to'g'ri:
1. \( x - 2 = 0 \implies x = 2 \) (tekshirish kerak)
2. \( \log_{3}(x^2 - 24) = 0 \implies x^2 - 24 = 1 \implies x^2 = 25 \implies x = \pm 5 \)
**Tekshiruv:**
- \( x = 2 \): \( x^2 - 24 = 4 - 24 = -20 < 0 \). Qabul qilinmaydi.
- \( x = 5 \): \( 5^2 - 24 = 1 > 0 \). Qabul qilinadi.
- \( x = -5 \): \( (-5)^2 - 24 = 1 > 0 \). Qabul qilinadi.
**Natija:** Ikkala yechim \( x = 5 \) va \( x = -5 \) mavjud.
**To'g'ri javob:** **C) 2**
---
### **14. \( \log _{2}(x-8)+\log _{3} 27=4 \) tenglama ildizi \( x_{0} \) bo'lsa, \( x_{0}+5 \) ning qiymatini toping.**
**Yechim:**
\[
\log_{2}(x - 8) + \log_{3}(27) = 4
\]
\[
\log_{3}(27) = 3 \implies \log_{2}(x - 8) + 3 = 4 \implies \log_{2}(x - 8) = 1
\]
\[
x - 8 = 2^1 = 2 \implies x = 10
\]
Shundan \( x_0 = 10 \), demak \( x_0 + 5 = 15 \).
**To'g'ri javob:** **C) 15**
---
**Javoblar:**
11. **B) 3**
12. **A) 0**
13. **C) 2**
14. **C) 15**
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
Qanday qiziqarli masalalarni hal qilayapsiz! Keling, birinchi tenglama \( \log _{x}(4 x-3)=2 \) ni ko'rib chiqamiz. Bu yerda quyidagi ifodani olamiz: \( 4x - 3 = x^2 \). Ushbu tenglamani yechganimizdan so'ng, \( x^2 - 4x + 3 = 0 \) shakliga keladi va ildizlari 1 va 3 ga teng bo'ladi. Ularning yig'indisi esa 4 ga teng (C). Endi ikkinchi tenglama \( 12 \log _{7}(2x-5)=\log _{7}(x-3) \) bo'lib, agar busizdan tenglamani o'zgartirsak, \( \log_{7}((2x-5)^{12}) = \log_{7}(x-3) \) ga kelamiz. Bu tenglamani yechish orqali, x ni topamiz va 2 ga teng qiymatga kelamiz (B). O'yin davom etsin!