Question
upstudy study bank question image url

3. LOGARIFMIK TENGLAMALAR 11. \( \log _{x}(4 x-3)=2 \) tenglama ildizlari yig'indisini toping. A) 2 B) 3 C) 4 D) 5 \( 12 \log _{7}(2 x-5)=\log _{7}(x-3) \) tenglamani yeching. A) 0 B) 2 C) 3 D) 4 \( 13(x-2) \log _{3}\left(x^{2}-24\right)=0 \) tenglamaning haqiqiy ildizlari nechta? A) 0 B) 1 C) 2 D) 3 \( 14 \log _{2}(x-8)+\log _{3} 27=4 \) tenglama ildizi \( x_{0} \) bo'lsa, \( x_{0}+5 \) ning qiymatini toping. A) 10 B) 12 C) 15 D) 17

Ask by Barber Maxwell. in Russia
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Javoblar:** 11. **B) 3** 12. **A) 0** 13. **C) 2** 14. **C) 15**

Solution

Quyidagi logarifmik tenglamalarning yechimlarini ko'rib chiqamiz va to'g'ri javoblarni aniqlaymiz. --- ### **11. \( \log _{x}(4 x-3)=2 \) tenglama ildizlari yig'indisini toping.** **Yechim:** \[ \log_{x}(4x - 3) = 2 \implies x^2 = 4x - 3 \implies x^2 - 4x + 3 = 0 \] Kvadrat tenglama ildizlari: \[ x = \frac{4 \pm \sqrt{16 - 12}}{2} = \frac{4 \pm 2}{2} \implies x_1 = 3, \quad x_2 = 1 \] **Tekshiruv:** - \( x = 3 \): Logarifm asos \(3 > 0\) va \( \neq 1 \), argument \(4(3) - 3 = 9 > 0\). Qabul qilinadi. - \( x = 1 \): Logarifm asos \(1\) bo'lishi mumkin emas. Rad etiladi. **Natija:** Faqat \( x = 3 \) haqiqiy yechim. **To'g'ri javob:** **B) 3** --- ### **12. \( 12 \log _{7}(2 x-5)=\log _{7}(x-3) \) tenglamani yeching.** **Yechim:** \[ 12 \log_{7}(2x - 5) = \log_{7}(x - 3) \] \[ (2x - 5)^{12} = x - 3 \] Bu tenglama uchun \( x > \frac{5}{2} \) va \( x > 3 \). Grafiklarni tahlil qilganda, chap tomonda \( (2x - 5)^{12} \) juda tez o'sadi va har doim \( x - 3 \) dan katta bo'ladi. Demak, haqiqatda hech qanday yechim mavjud emas. **Natija:** Hech qanday yechim yo'q. **To'g'ri javob:** **A) 0** --- ### **13. \( (x-2) \log _{3}\left(x^{2}-24\right)=0 \) tenglamaning haqiqiy ildizlari nechta?** **Yechim:** \[ (x - 2) \log_{3}(x^2 - 24) = 0 \] Bu tenglama quyidagi hollarda to'g'ri: 1. \( x - 2 = 0 \implies x = 2 \) (tekshirish kerak) 2. \( \log_{3}(x^2 - 24) = 0 \implies x^2 - 24 = 1 \implies x^2 = 25 \implies x = \pm 5 \) **Tekshiruv:** - \( x = 2 \): \( x^2 - 24 = 4 - 24 = -20 < 0 \). Qabul qilinmaydi. - \( x = 5 \): \( 5^2 - 24 = 1 > 0 \). Qabul qilinadi. - \( x = -5 \): \( (-5)^2 - 24 = 1 > 0 \). Qabul qilinadi. **Natija:** Ikkala yechim \( x = 5 \) va \( x = -5 \) mavjud. **To'g'ri javob:** **C) 2** --- ### **14. \( \log _{2}(x-8)+\log _{3} 27=4 \) tenglama ildizi \( x_{0} \) bo'lsa, \( x_{0}+5 \) ning qiymatini toping.** **Yechim:** \[ \log_{2}(x - 8) + \log_{3}(27) = 4 \] \[ \log_{3}(27) = 3 \implies \log_{2}(x - 8) + 3 = 4 \implies \log_{2}(x - 8) = 1 \] \[ x - 8 = 2^1 = 2 \implies x = 10 \] Shundan \( x_0 = 10 \), demak \( x_0 + 5 = 15 \). **To'g'ri javob:** **C) 15** --- **Javoblar:** 11. **B) 3** 12. **A) 0** 13. **C) 2** 14. **C) 15**

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Qanday qiziqarli masalalarni hal qilayapsiz! Keling, birinchi tenglama \( \log _{x}(4 x-3)=2 \) ni ko'rib chiqamiz. Bu yerda quyidagi ifodani olamiz: \( 4x - 3 = x^2 \). Ushbu tenglamani yechganimizdan so'ng, \( x^2 - 4x + 3 = 0 \) shakliga keladi va ildizlari 1 va 3 ga teng bo'ladi. Ularning yig'indisi esa 4 ga teng (C). Endi ikkinchi tenglama \( 12 \log _{7}(2x-5)=\log _{7}(x-3) \) bo'lib, agar busizdan tenglamani o'zgartirsak, \( \log_{7}((2x-5)^{12}) = \log_{7}(x-3) \) ga kelamiz. Bu tenglamani yechish orqali, x ni topamiz va 2 ga teng qiymatga kelamiz (B). O'yin davom etsin!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy