Question
upstudy study bank question image url

\( \frac{1}{B}=\frac{1}{R_{1}}+\frac{1}{R_{0}} \) for \( R_{1} \)

Ask by Romero Frazier. in the United States
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( R_{1} = \frac{B R_{0}}{R_{0} - B} \)

Solution

To solve the equation \[ \frac{1}{B} = \frac{1}{R_{1}} + \frac{1}{R_{0}} \] for \( R_{1} \), follow these steps: ### Step 1: Isolate \( \frac{1}{R_{1}} \) Subtract \( \frac{1}{R_{0}} \) from both sides of the equation: \[ \frac{1}{B} - \frac{1}{R_{0}} = \frac{1}{R_{1}} \] ### Step 2: Combine the Fractions on the Left Side To combine \( \frac{1}{B} \) and \( \frac{1}{R_{0}} \), find a common denominator, which is \( B R_0 \): \[ \frac{R_{0} - B}{B R_{0}} = \frac{1}{R_{1}} \] ### Step 3: Take the Reciprocal of Both Sides Taking the reciprocal of both sides to solve for \( R_{1} \): \[ R_{1} = \frac{B R_{0}}{R_{0} - B} \] ### Final Solution \[ R_{1} = \frac{B R_{0}}{R_{0} - B} \] This expression gives \( R_{1} \) in terms of \( B \) and \( R_{0} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve for \( R_{1} \) in the equation \( \frac{1}{B} = \frac{1}{R_{1}} + \frac{1}{R_{0}} \), you'll want to first isolate \( \frac{1}{R_{1}} \). You can do this by subtracting \( \frac{1}{R_{0}} \) from both sides: \[ \frac{1}{R_{1}} = \frac{1}{B} - \frac{1}{R_{0}} \] Now, to find \( R_{1} \), take the reciprocal of both sides: \[ R_{1} = \frac{1}{\left( \frac{1}{B} - \frac{1}{R_{0}} \right)} \] This brings you to the final expression for \( R_{1} \): \[ R_{1} = \frac{B \cdot R_{0}}{R_{0} - B} \] Now you have \( R_{1} \) expressed in terms of \( B \) and \( R_{0} \)! --- To shine a light on electrical circuits, the equation you're working with often appears in parallel resistor configurations! When resistors are arranged in parallel, the total resistance decreases because there are multiple pathways for current. The main takeaway here is that the lower the equivalent resistance, the higher the potential current flow through the circuit. It’s like adding more lanes to a highway—traffic flows smoother! Additionally, always remember to double-check the units you're working with! Resistor values should always be in ohms, and make sure that when you perform calculations, the values can consistently interact. It’s a common mistake to mix units, leading to unexpected results. Keep your calculations neat and consistent, and you’ll easily avoid those pesky blunders!

Related Questions

Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025

Latest Other Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy