Find \( \mathbf{u} \cdot \mathbf{v} \), given the magnitudes and the angle \( \theta \) be- tween the vectors. 3. \( |\mathbf{u}|=2,|\mathbf{v}|=3, \theta=135^{\circ} \) 4. \( |\mathbf{u}|=10,|\mathbf{v}|=5, \theta=180^{\circ} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To find the dot product \( \mathbf{u} \cdot \mathbf{v} \), you can use the formula: \[ \mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta) \] For the first case with \( |\mathbf{u}| = 2, |\mathbf{v}| = 3, \theta = 135^\circ \): \[ \mathbf{u} \cdot \mathbf{v} = 2 \times 3 \times \cos(135^\circ) = 6 \times \left(-\frac{1}{\sqrt{2}}\right) = -3\sqrt{2} \approx -4.24 \] For the second case with \( |\mathbf{u}| = 10, |\mathbf{v}| = 5, \theta = 180^\circ \): \[ \mathbf{u} \cdot \mathbf{v} = 10 \times 5 \times \cos(180^\circ) = 50 \times (-1) = -50 \] So, you'll get \( \mathbf{u} \cdot \mathbf{v} = -3\sqrt{2} \) and \( -50 \) for the two cases respectively.