3. Logarifmik tenglamalar \( 1 \quad\left(6^{x}-3\right)\left(6^{x}-12\right)=0 \) tenglamaning yechimlari 6 yig'indisini toping. A) 0 B) 1 C) 2 D) 3 \( 2 \log _{2}\left(x^{2}-2 x\right)=3 \) tenglamani yeching. A) \( -2 ;-4 \) B) -4 C) \( -2 ; 4 \) D) 4
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
Dastlab, \( 1 \) tenglamani yechamiz: \((6^x - 3)(6^x - 12) = 0\). Buning natijasida \( 6^x = 3 \) va \( 6^x = 12 \) qonuniy yechimlarni beradi. Ular \( x_1 = \log_6(3) \) va \( x_2 = \log_6(12) \) bo'ladi. Bu erda yig'indi \( x_1 + x_2 = \log_6(3) + \log_6(12) = \log_6(3 \cdot 12) = \log_6(36) \). \( 36 = 6^2 \), shuning uchun yig'indisi \( 2 \). Keyin \( 2 \log_{2}(x^{2}-2x) = 3 \) tenglamasini yechamiz. Birinchi navbatda, ikkiga bo'lamiz: \(\log_{2}(x^{2}-2x) = \frac{3}{2}\). Keyin bu tenglama eksponent vazifani bajaramiz: \(x^{2}-2x = 2^{\frac{3}{2}} = 2\sqrt{2}\). Bu tenglama \(x^{2}-2x - 2\sqrt{2} = 0\) ko'rinishida ifodalanadi va u yechimini kvadrat formulasi yordamida topamiz. Natijalari −4 va 2 bo'ladi, shuning uchun yechimlar: \(-2; 4\).