Simplify the following: \( \begin{array}{lll}\text { (a) } \frac{2^{2 x}-2^{x}}{2^{x}-1} & \text { (b) } \frac{2^{2 x}-1}{2^{x}+1} & \text { (c) } \frac{9^{x}-9}{3^{x}-3} \\ \text { (d) } \frac{16-4^{x}}{2^{x}-4} & \end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
Let's simplify each expression step by step. (a) \( \frac{2^{2x} - 2^{x}}{2^{x} - 1} \) We can factor the numerator: \[ 2^{2x} - 2^{x} = 2^{x}(2^{x} - 1) \] Now substituting this back into the expression gives: \[ \frac{2^{x}(2^{x} - 1)}{2^{x} - 1} \] Assuming \( 2^{x} \neq 1 \) (which means \( x \neq 0 \)), we can cancel \( (2^{x} - 1) \): \[ = 2^{x} \] (b) \( \frac{2^{2x} - 1}{2^{x} + 1} \) The numerator can be factored using the difference of squares: \[ 2^{2x} - 1 = (2^{x} - 1)(2^{x} + 1) \] Thus, substituting this into the fraction gives: \[ \frac{(2^{x} - 1)(2^{x} + 1)}{2^{x} + 1} \] Assuming \( 2^{x} \neq -1 \) (valid since \( 2^{x} \) is always positive), we can cancel \( (2^{x} + 1) \): \[ = 2^{x} - 1 \] (c) \( \frac{9^{x} - 9}{3^{x} - 3} \) We can express \( 9^{x} \) as \( (3^{2})^{x} = (3^{x})^{2} \): \[ \frac{(3^{x})^{2} - 3^{2}}{3^{x} - 3} \] The numerator now factors as a difference of squares: \[ = \frac{(3^{x} - 3)(3^{x} + 3)}{3^{x} - 3} \] Assuming \( 3^{x} \neq 3 \), we can cancel \( (3^{x} - 3) \): \[ = 3^{x} + 3 \] (d) \( \frac{16 - 4^{x}}{2^{x} - 4} \) We can rewrite \( 4^{x} \) as \( (2^{2})^{x} = (2^{x})^{2} \), thus: \[ = \frac{16 - (2^{x})^{2}}{2^{x} - 4} \] The numerator is a difference of squares: \[ = \frac{(4 - 2^{x})(4 + 2^{x})}{2^{x} - 4} \] Noticing that \( 2^{x} - 4 = -(4 - 2^{x}) \), we have: \[ = -\frac{(4 - 2^{x})(4 + 2^{x})}{(4 - 2^{x})} = -(4 + 2^{x}) \] So the simplified forms of the expressions are: (a) \( 2^{x} \) (b) \( 2^{x} - 1 \) (c) \( 3^{x} + 3 \) (d) \( -(4 + 2^{x}) \)