Question
upstudy study bank question image url

Simplify the following expression. \( \sqrt{5} \cdot \sqrt{50} \)

Ask by Gray Zimmerman. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\(5\sqrt{10}\)

Solution

To simplify the expression \( \sqrt{5} \cdot \sqrt{50} \), follow these steps: 1. **Use the Product Property of Square Roots:** The product of two square roots can be combined under a single square root: \[ \sqrt{5} \cdot \sqrt{50} = \sqrt{5 \times 50} = \sqrt{250} \] 2. **Simplify \( \sqrt{250} \):** Factor 250 into its prime factors to identify perfect squares: \[ 250 = 25 \times 10 = 5^2 \times 10 \] Now, apply the square root to each factor: \[ \sqrt{250} = \sqrt{5^2 \times 10} = \sqrt{5^2} \times \sqrt{10} = 5\sqrt{10} \] So, the simplified form of \( \sqrt{5} \cdot \sqrt{50} \) is: \[ 5\sqrt{10} \] **Answer:** \(5\sqrt{10}\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To simplify \( \sqrt{5} \cdot \sqrt{50} \), you can use the property of square roots that states \( \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \). So, first, we multiply inside the square root: \[ \sqrt{5} \cdot \sqrt{50} = \sqrt{5 \cdot 50} = \sqrt{250} \] Next, we can simplify \( \sqrt{250} \). We can factor 250 into prime factors: \[ 250 = 25 \cdot 10 = 5^2 \cdot 10 \] This means: \[ \sqrt{250} = \sqrt{5^2 \cdot 10} = \sqrt{5^2} \cdot \sqrt{10} = 5\sqrt{10} \] So, the simplified expression is: \[ 5\sqrt{10} \]

Latest Pre Algebra Questions

Write down the next two terms for each geometric sequence. a \( 2 ; 4 ; 8 ; 16 ; \ldots \) b \( 5 ; 15 ; 45 ; \ldots \) c \( 3 ; 6 ; 12 ; 24 ; \ldots \) d \( 18 ; 6 ; 2 ; \ldots \) e \( 20 ; 10 ; 5 ; \ldots \) f \( 4 ;-12 ; 36 ; \ldots \) g \( 7 ;-14 ; 28 ; \ldots \) h \( 8 ; 4 ; 2 ; \ldots \) i \( \frac{1}{9} ; \frac{1}{3} ; 1 ; \ldots \) j \( 500(1,25) ; 500(1,25)^{2} ; 500(1,25)^{3} ; \ldots \) k \( 1000(1,8) ; 1000(1,8)^{2} ; 1000(1,8)^{3} ; \ldots \) i \( 6000(1,1) ; 6000(1,1)^{2} ; 6000(1,1)^{3} ; \ldots \) m \( 400\left(1+\frac{0,09}{12}\right) ; 400\left(1+\frac{0,09}{12}\right)^{2} ; 400\left(1+\frac{0,09}{12}\right)^{3} ; \ldots \) n \( 300\left(1+\frac{0,1125}{4}\right) ; 300\left(1+\frac{0,1125}{4}\right)^{2} ; 300\left(1+\frac{0,1125}{4}\right)^{3} ; \ldots \) o \( x\left(1+\frac{0,092}{2}\right) ; x\left(1+\frac{0,092}{2}\right)^{2} ; x\left(1+\frac{0,092}{2}\right)^{3} ; \ldots \) 2 Find the first three terms for each geometric sequence. a \( \mathrm{T}_{1}=2 \) and \( r=3 \) b \( \mathrm{T}_{1}=4 \) and \( r=\frac{1}{2} \) c \( \mathrm{T}_{1}=12 \) and \( r=\frac{-1}{3} \) d \( T_{1}=500 \) and \( r=1,1 \) e. \( \mathrm{T}_{1}=8000 \) and \( r=\left(1+\frac{0,09}{4}\right) \) f \( T_{1}=3 \) and \( T_{6}=96 \) g \( \quad T_{1}=7 \) and \( T_{5}=\frac{7}{81} \) h \( T_{2}=6 \) and \( T_{7}=192 \) \( T_{3}=18 \) and \( T_{5}=162 \) -d \( T_{3}=16 \) and \( T_{7}=256 \) k \( T_{2}=10 \) and \( T_{5}=80 \) I \( T_{2}=3 \) and \( T_{6}=\frac{1}{27} \) Determine: a which term is equal to 1280 in the sequence \( 5 ; 10 ; 20 ; \ldots \) b which term is equal to 1536 in the sequence \( 3 ; 6 ; 12 ; \ldots \) c which term is equal to 6561 in the sequence \( 3 ; 9 ; 27 ; \ldots \) d which term is equal to \( \frac{5}{16384} \) in the sequence \( \frac{5}{4} ; \frac{5}{8} ; \frac{5}{16} ; \ldots \) e which term is equal to \( \frac{1}{8192} \) in the sequence \( 16 ; 8 ; 4 ; \ldots \)
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy