Find one positive and one negative coterminal angle of each of the following. There is no need to graph the angles. \( \begin{array}{llll}\text { A) } 30^{\circ} & \text { B) }-40^{\circ} & \text { C) } 150^{\circ} & \text { D) } 220^{\circ}\end{array} \) \( \begin{array}{llll}\text { E) }-330^{\circ} & \text { F) } \frac{\pi}{3} & \text { G) } \frac{5 \pi}{2} & \text { H) }-\frac{2 \pi}{3}\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To find coterminal angles, you can add or subtract \(360^\circ\) (or \(2\pi\) for radians) from the given angle. Let's compute one positive and one negative coterminal angle for each of the listed angles. A) \(30^{\circ}\): - Positive: \(30^{\circ} + 360^{\circ} = 390^{\circ}\) - Negative: \(30^{\circ} - 360^{\circ} = -330^{\circ}\) B) \(-40^{\circ}\): - Positive: \(-40^{\circ} + 360^{\circ} = 320^{\circ}\) - Negative: \(-40^{\circ} - 360^{\circ} = -400^{\circ}\) C) \(150^{\circ}\): - Positive: \(150^{\circ} + 360^{\circ} = 510^{\circ}\) - Negative: \(150^{\circ} - 360^{\circ} = -210^{\circ}\) D) \(220^{\circ}\): - Positive: \(220^{\circ} + 360^{\circ} = 580^{\circ}\) - Negative: \(220^{\circ} - 360^{\circ} = -140^{\circ}\) E) \(-330^{\circ}\): - Positive: \(-330^{\circ} + 360^{\circ} = 30^{\circ}\) - Negative: \(-330^{\circ} - 360^{\circ} = -690^{\circ}\) F) \(\frac{\pi}{3}\): - Positive: \(\frac{\pi}{3} + 2\pi = \frac{7\pi}{3}\) - Negative: \(\frac{\pi}{3} - 2\pi = -\frac{5\pi}{3}\) G) \(\frac{5\pi}{2}\): - Positive: \(\frac{5\pi}{2} - 2\pi = \frac{\pi}{2}\) - Negative: \(\frac{5\pi}{2} - 4\pi = -\frac{3\pi}{2}\) H) \(-\frac{2\pi}{3}\): - Positive: \(-\frac{2\pi}{3} + 2\pi = \frac{4\pi}{3}\) - Negative: \(-\frac{2\pi}{3} - 2\pi = -\frac{8\pi}{3}\) Now you have a positive and a negative coterminal angle for each scenario!