Question
upstudy study bank question image url

Find one positive and one negative coterminal angle of each of the following. There is no need to graph the angles. \( \begin{array}{llll}\text { A) } 30^{\circ} & \text { B) }-40^{\circ} & \text { C) } 150^{\circ} & \text { D) } 220^{\circ}\end{array} \) \( \begin{array}{llll}\text { E) }-330^{\circ} & \text { F) } \frac{\pi}{3} & \text { G) } \frac{5 \pi}{2} & \text { H) }-\frac{2 \pi}{3}\end{array} \)

Ask by Moran Pritchard. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the positive and negative coterminal angles for each given angle: - **A) \(30^\circ\):** - Positive: \(390^\circ\) - Negative: \(-330^\circ\) - **B) \(-40^\circ\):** - Positive: \(320^\circ\) - Negative: \(-400^\circ\) - **C) \(150^\circ\):** - Positive: \(510^\circ\) - Negative: \(-210^\circ\) - **D) \(220^\circ\):** - Positive: \(580^\circ\) - Negative: \(-140^\circ\) - **E) \(-330^\circ\):** - Positive: \(30^\circ\) - Negative: \(-690^\circ\) - **F) \(\frac{\pi}{3}\):** - Positive: \(\frac{7\pi}{3}\) - Negative: \(-\frac{5\pi}{3}\) - **G) \(\frac{5\pi}{2}\):** - Positive: \(\frac{9\pi}{2}\) - Negative: \(-\frac{3\pi}{2}\) - **H) \(-\frac{2\pi}{3}\):** - Positive: \(\frac{4\pi}{3}\) - Negative: \(-\frac{8\pi}{3}\)

Solution

Certainly! Coterminal angles are angles that share the same terminal side when positioned in standard form. To find coterminal angles, you can add or subtract full rotations: - **In degrees**: Add or subtract \(360^\circ\). - **In radians**: Add or subtract \(2\pi\). Below are the positive and negative coterminal angles for each given angle: --- ### **A) \(30^\circ\)** - **Positive Coterminal Angle**: \(30^\circ + 360^\circ = 390^\circ\) - **Negative Coterminal Angle**: \(30^\circ - 360^\circ = -330^\circ\) ### **B) \(-40^\circ\)** - **Positive Coterminal Angle**: \(-40^\circ + 360^\circ = 320^\circ\) - **Negative Coterminal Angle**: \(-40^\circ - 360^\circ = -400^\circ\) ### **C) \(150^\circ\)** - **Positive Coterminal Angle**: \(150^\circ + 360^\circ = 510^\circ\) - **Negative Coterminal Angle**: \(150^\circ - 360^\circ = -210^\circ\) ### **D) \(220^\circ\)** - **Positive Coterminal Angle**: \(220^\circ + 360^\circ = 580^\circ\) - **Negative Coterminal Angle**: \(220^\circ - 360^\circ = -140^\circ\) ### **E) \(-330^\circ\)** - **Positive Coterminal Angle**: \(-330^\circ + 360^\circ = 30^\circ\) - **Negative Coterminal Angle**: \(-330^\circ - 360^\circ = -690^\circ\) ### **F) \(\frac{\pi}{3}\)** - **Positive Coterminal Angle**: \(\frac{\pi}{3} + 2\pi = \frac{7\pi}{3}\) - **Negative Coterminal Angle**: \(\frac{\pi}{3} - 2\pi = -\frac{5\pi}{3}\) ### **G) \(\frac{5\pi}{2}\)** - **Positive Coterminal Angle**: \(\frac{5\pi}{2} + 2\pi = \frac{9\pi}{2}\) - **Negative Coterminal Angle**: \(\frac{5\pi}{2} - 4\pi = -\frac{3\pi}{2}\) ### **H) \(-\frac{2\pi}{3}\)** - **Positive Coterminal Angle**: \(-\frac{2\pi}{3} + 2\pi = \frac{4\pi}{3}\) - **Negative Coterminal Angle**: \(-\frac{2\pi}{3} - 2\pi = -\frac{8\pi}{3}\) --- Feel free to choose any other multiples of full rotations (\(360^\circ\) or \(2\pi\)) to find additional coterminal angles as needed.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To find coterminal angles, you can add or subtract \(360^\circ\) (or \(2\pi\) for radians) from the given angle. Let's compute one positive and one negative coterminal angle for each of the listed angles. A) \(30^{\circ}\): - Positive: \(30^{\circ} + 360^{\circ} = 390^{\circ}\) - Negative: \(30^{\circ} - 360^{\circ} = -330^{\circ}\) B) \(-40^{\circ}\): - Positive: \(-40^{\circ} + 360^{\circ} = 320^{\circ}\) - Negative: \(-40^{\circ} - 360^{\circ} = -400^{\circ}\) C) \(150^{\circ}\): - Positive: \(150^{\circ} + 360^{\circ} = 510^{\circ}\) - Negative: \(150^{\circ} - 360^{\circ} = -210^{\circ}\) D) \(220^{\circ}\): - Positive: \(220^{\circ} + 360^{\circ} = 580^{\circ}\) - Negative: \(220^{\circ} - 360^{\circ} = -140^{\circ}\) E) \(-330^{\circ}\): - Positive: \(-330^{\circ} + 360^{\circ} = 30^{\circ}\) - Negative: \(-330^{\circ} - 360^{\circ} = -690^{\circ}\) F) \(\frac{\pi}{3}\): - Positive: \(\frac{\pi}{3} + 2\pi = \frac{7\pi}{3}\) - Negative: \(\frac{\pi}{3} - 2\pi = -\frac{5\pi}{3}\) G) \(\frac{5\pi}{2}\): - Positive: \(\frac{5\pi}{2} - 2\pi = \frac{\pi}{2}\) - Negative: \(\frac{5\pi}{2} - 4\pi = -\frac{3\pi}{2}\) H) \(-\frac{2\pi}{3}\): - Positive: \(-\frac{2\pi}{3} + 2\pi = \frac{4\pi}{3}\) - Negative: \(-\frac{2\pi}{3} - 2\pi = -\frac{8\pi}{3}\) Now you have a positive and a negative coterminal angle for each scenario!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy