Question
upstudy study bank question image url

Solve for \( x \) in the following equation: \( e^{x}-e^{-x}=3 \)

Ask by Graham Lee. in the United Kingdom
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( x = \ln{(3 + \sqrt{13})} - \ln{(2)} \)

Solution

Solve the equation \( e^{x}-e^{-x}=3 \). Solve the equation by following steps: - step0: Solve for \(x\): \(e^{x}-e^{-x}=3\) - step1: Move the expression to the left side: \(e^{x}-e^{-x}-3=0\) - step2: Factor the expression: \(\left(e^{2x}-1-3e^{x}\right)\left(e^{x}\right)^{-1}=0\) - step3: Rewrite the expression: \(\frac{e^{2x}-1-3e^{x}}{e^{x}}=0\) - step4: Cross multiply: \(e^{2x}-1-3e^{x}=e^{x}\times 0\) - step5: Simplify the equation: \(e^{2x}-1-3e^{x}=0\) - step6: Use substitution: \(t^{2}-1-3t=0\) - step7: Rewrite in standard form: \(t^{2}-3t-1=0\) - step8: Solve using the quadratic formula: \(t=\frac{3\pm \sqrt{\left(-3\right)^{2}-4\left(-1\right)}}{2}\) - step9: Simplify the expression: \(t=\frac{3\pm \sqrt{13}}{2}\) - step10: Separate into possible cases: \(\begin{align}&t=\frac{3+\sqrt{13}}{2}\\&t=\frac{3-\sqrt{13}}{2}\end{align}\) - step11: Substitute back: \(\begin{align}&e^{x}=\frac{3+\sqrt{13}}{2}\\&e^{x}=\frac{3-\sqrt{13}}{2}\end{align}\) - step12: Solve the equation for \(x:\) \(\begin{align}&x=\ln{\left(3+\sqrt{13}\right)}-\ln{\left(2\right)}\\&x \notin \mathbb{R}\end{align}\) - step13: Find the union: \(x=\ln{\left(3+\sqrt{13}\right)}-\ln{\left(2\right)}\) The solution to the equation \(e^{x}-e^{-x}=3\) is \(x=\ln{(3+\sqrt{13})}-\ln{(2)}\).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve the equation \( e^{x} - e^{-x} = 3 \), we can start by letting \( y = e^{x} \). This means that \( e^{-x} = \frac{1}{y} \), and we can rewrite the equation as: \[ y - \frac{1}{y} = 3 \] Multiplying through by \( y \) to eliminate the fraction, we get: \[ y^2 - 1 = 3y \] Rearranging the terms gives us a quadratic equation: \[ y^2 - 3y - 1 = 0 \] Now, we can use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = -3, c = -1 \): \[ y = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{3 \pm \sqrt{9 + 4}}{2} = \frac{3 \pm \sqrt{13}}{2} \] This gives us two possible values for \( y \): \[ y_1 = \frac{3 + \sqrt{13}}{2}, \quad y_2 = \frac{3 - \sqrt{13}}{2} \] Since \( y = e^{x} \) must be positive, we discard \( y_2 \) because \( \sqrt{13} \) is greater than 3, making \( y_2 \) negative. Thus, we only consider: \[ y = \frac{3 + \sqrt{13}}{2} \] Now, to find \( x \), we take the natural logarithm: \[ x = \ln\left(\frac{3 + \sqrt{13}}{2}\right) \] So, the solution is: \[ x = \ln\left(\frac{3 + \sqrt{13}}{2}\right) \]

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy