Answer
The integral \( \int 5x \cos^{-1}(x) \, dx \) evaluates to:
\[
\frac{5}{2} x^{2} \cos^{-1}x + \frac{5}{4} \sin^{-1}x - \frac{5}{4} x \sqrt{1 - x^{2}} + C
\]
where \( C \) is the constant of integration.
Solution
To evaluate the integral \( \int 5x \cos^{-1}(x) \, dx \), we can use integration by parts.
**Step 1: Choose \( u \) and \( dv \)**
Let:
- \( u = \cos^{-1}(x) \)
Then, \( du = -\frac{1}{\sqrt{1 - x^2}} \, dx \)
- \( dv = 5x \, dx \)
Then, \( v = \frac{5x^2}{2} \)
**Step 2: Apply Integration by Parts Formula**
The integration by parts formula is:
\[ \int u \, dv = uv - \int v \, du \]
Applying this:
\[
\int 5x \cos^{-1}(x) \, dx = \frac{5x^2}{2} \cos^{-1}(x) - \int \frac{5x^2}{2} \left( -\frac{1}{\sqrt{1 - x^2}} \right) dx
\]
\[
= \frac{5x^2}{2} \cos^{-1}(x) + \frac{5}{2} \int \frac{x^2}{\sqrt{1 - x^2}} \, dx
\]
**Step 3: Simplify the Remaining Integral**
To evaluate \( \int \frac{x^2}{\sqrt{1 - x^2}} \, dx \), use the substitution \( x^2 = 1 - (1 - x^2) \):
\[
\int \frac{x^2}{\sqrt{1 - x^2}} \, dx = \int \frac{1 - (1 - x^2)}{\sqrt{1 - x^2}} \, dx
\]
\[
= \int \frac{1}{\sqrt{1 - x^2}} \, dx - \int \sqrt{1 - x^2} \, dx
\]
\[
= \sin^{-1}(x) - \left( \frac{x \sqrt{1 - x^2}}{2} + \frac{\sin^{-1}(x)}{2} \right) + C
\]
\[
= \frac{\sin^{-1}(x)}{2} - \frac{x \sqrt{1 - x^2}}{2} + C
\]
**Step 4: Combine Everything**
Substitute back into the expression:
\[
\int 5x \cos^{-1}(x) \, dx = \frac{5x^2}{2} \cos^{-1}(x) + \frac{5}{2} \left( \frac{\sin^{-1}(x)}{2} - \frac{x \sqrt{1 - x^2}}{2} \right) + C
\]
\[
= \frac{5x^2}{2} \cos^{-1}(x) + \frac{5}{4} \sin^{-1}(x) - \frac{5x \sqrt{1 - x^2}}{4} + C
\]
**Final Answer:**
\[
\int 5x \cos^{-1}(x) \, dx = \frac{5}{2} x^{2} \cos^{-1}x + \frac{5}{4} \sin^{-1}x - \frac{5}{4} x \sqrt{1 - x^{2}} + C
\]
**Where \( C \) is the constant of integration.**
Answer: After expanding, an antiderivative is (5⁄2)x² arccos x plus (5⁄4) arcsin x minus (5⁄4)x√(1 – x²) plus C. Thus,
∫5x cos⁻¹x dx = (5/2)x² arccos x + (5/4) sin⁻¹x – (5/4)x√(1−x²) + C
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution