Question
upstudy study bank question image url

14. In \( \triangle Q R S, m \angle Q=(4 x-17)^{\circ}, m \angle R=(x+6)^{\circ} \), and \( m \angle S=(10 x-4)^{\circ} \). Find the measure of each angle, then classify \( \triangle Q R S \) by its angles. \( m \angle Q= \)

Ask by Lang Cook. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Los ángulos miden \( 35^{\circ} \), \( 19^{\circ} \), y \( 126^{\circ} \). El triángulo \( \triangle QRS \) es un triángulo obtuso.

Solution

Para resolver el problema en el triángulo \( \triangle QRS \) donde: - \( m \angle Q = (4x - 17)^{\circ} \) - \( m \angle R = (x + 6)^{\circ} \) - \( m \angle S = (10x - 4)^{\circ} \) **Paso 1: Sumar los ángulos del triángulo** Sabemos que la suma de los ángulos internos de un triángulo es \( 180^{\circ} \). Por lo tanto: \[ (4x - 17) + (x + 6) + (10x - 4) = 180 \] **Paso 2: Simplificar la ecuación** \[ 4x - 17 + x + 6 + 10x - 4 = 180 \] \[ 15x - 15 = 180 \] **Paso 3: Resolver para \( x \)** \[ 15x = 180 + 15 \] \[ 15x = 195 \] \[ x = \frac{195}{15} \] \[ x = 13 \] **Paso 4: Calcular cada ángulo** 1. **Ángulo Q:** \[ m \angle Q = 4x - 17 = 4(13) - 17 = 52 - 17 = 35^{\circ} \] 2. **Ángulo R:** \[ m \angle R = x + 6 = 13 + 6 = 19^{\circ} \] 3. **Ángulo S:** \[ m \angle S = 10x - 4 = 10(13) - 4 = 130 - 4 = 126^{\circ} \] **Paso 5: Clasificar el triángulo por sus ángulos** - **Triángulo Obtuso:** Si al menos un ángulo es mayor a \( 90^{\circ} \). En este caso, el ángulo \( S \) mide \( 126^{\circ} \), que es mayor a \( 90^{\circ} \). Por lo tanto, el triángulo \( \triangle QRS \) es un **triángulo obtuso**. **Resumen de las medidas de los ángulos:** - \( m \angle Q = 35^{\circ} \) - \( m \angle R = 19^{\circ} \) - \( m \angle S = 126^{\circ} \) **Clasificación del triángulo:** Triángulo obtuso.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the measures of the angles in triangle \( QRS \), we start with the property that the sum of the interior angles in a triangle is \( 180^\circ \): \[ m \angle Q + m \angle R + m \angle S = 180^\circ \] Given: - \( m \angle Q = (4x - 17)^\circ \) - \( m \angle R = (x + 6)^\circ \) - \( m \angle S = (10x - 4)^\circ \) Substituting these into the equation gives: \[ (4x - 17) + (x + 6) + (10x - 4) = 180 \] Combining like terms: \[ 4x + x + 10x - 17 + 6 - 4 = 180 \] This simplifies to: \[ 15x - 15 = 180 \] Adding 15 to both sides: \[ 15x = 195 \] Dividing by 15: \[ x = 13 \] Now, substituting \( x \) back into the expressions to find each angle: 1. \( m \angle Q = 4(13) - 17 = 52 - 17 = 35^\circ \) 2. \( m \angle R = 13 + 6 = 19^\circ \) 3. \( m \angle S = 10(13) - 4 = 130 - 4 = 126^\circ \) Now we classify the triangle by its angles. With angles measuring \( 35^\circ \), \( 19^\circ \), and \( 126^\circ \): - Since one angle is greater than \( 90^\circ \) (specifically \( 126^\circ \)), triangle \( QRS \) is classified as an obtuse triangle. Thus, the measures are: \[ m \angle Q = 35^\circ, \quad m \angle R = 19^\circ, \quad m \angle S = 126^\circ. \] Therefore, \( m \angle Q = 35^\circ \).

Related Questions

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy