Question
upstudy study bank question image url

Determina el valor de \( \lim _{x \rightarrow \infty} x-3-\sqrt{x^{2}+2 \cdot x+1} \)

Ask by Campbell Lindsey. in Mexico
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La limite est -4.

Solution

Pour déterminer la limite suivante : \[ \lim_{x \rightarrow \infty} \left( x - 3 - \sqrt{x^{2} + 2x + 1} \right) \] **Étape 1 : Simplification de l'expression sous la racine** Commençons par simplifier l'expression sous la racine : \[ \sqrt{x^{2} + 2x + 1} = \sqrt{(x + 1)^{2}} = |x + 1| \] Comme \( x \) tend vers \( +\infty \), \( x + 1 \) est positif. Ainsi, \[ \sqrt{x^{2} + 2x + 1} = x + 1 \] **Étape 2 : Substitution dans l'expression originale** Substituons cette simplification dans l'expression originale : \[ x - 3 - \sqrt{x^{2} + 2x + 1} = x - 3 - (x + 1) \] Simplifions davantage : \[ x - 3 - x - 1 = -4 \] **Conclusion** Ainsi, la limite est : \[ \lim_{x \rightarrow \infty} \left( x - 3 - \sqrt{x^{2} + 2x + 1} \right) = -4 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Para resolver el límite \( \lim _{x \rightarrow \infty} x-3-\sqrt{x^{2}+2 \cdot x+1} \), comenzamos simplificando la expresión en la raíz: \[ \sqrt{x^{2}+2x+1} = \sqrt{(x+1)^{2}} = x + 1 \quad \text{(ya que } x \to \infty\text{)} \] Sustituyendo esto en el límite, obtenemos: \[ \lim _{x \rightarrow \infty} (x - 3 - (x + 1)) = \lim _{x \rightarrow \infty} (x - 3 - x - 1) \] Esto se simplifica a: \[ \lim _{x \rightarrow \infty} (-4) = -4 \] Por lo tanto, el valor del límite es: \[ \boxed{-4} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy