3. Prove the following: a) \( \sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To prove \( \sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2} \), we can use the sine subtraction formula. Recall that the sine difference can be expressed using the formula: \[ \sin A - \sin B = 2 \cos \left( \frac{A+B}{2} \right) \sin \left( \frac{A-B}{2} \right) \] In this case, let \( A = x \) and \( B = y \). Therefore, we have: \[ \sin x - \sin y = 2 \cos \left( \frac{x+y}{2} \right) \sin \left( \frac{x-y}{2} \right) \] This matches the given expression, thereby proving that \( \sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2} \). Thus, the proof is complete!