Question
upstudy study bank question image url

10) \( \log \left(2^{2} \cdot 3\right)^{6} \) 12) \( \log _{4}\left(x \cdot y \cdot z^{4}\right) \) 14) \( 5 \log _{3} a+25 \log _{3} b \) 20) \( 5 \log _{8} 5-30 \log _{8} 12 \) 18) \( 10 \log _{9} a+5 \log _{9} b \) 16) \( 3 \log _{3} a-18 \log _{3} b \)

Ask by Vargas Whittaker. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the simplified forms of the given logarithmic expressions: 1. \( \log \left(2^{2} \cdot 3\right)^{6} = 12\,\log 2\,+\,6\,\log 3 \) 2. \( \log _{4}\left(x \cdot y \cdot z^{4}\right) = \log_4 x\,+\,\log_4 y\,+\,4\,\log_4 z \) 3. \( 5 \log _{3} a + 25 \log _{3} b = \log_3 (a^{5}b^{25}) \) 4. \( 5 \log _{8} 5 - 30 \log _{8} 12 = \log_8 \left(\dfrac{5^{5}}{12^{30}}\right) \) 5. \( 10 \log _{9} a + 5 \log _{9} b = \log_9 (a^{10}b^{5}) \) 6. \( 3 \log _{3} a - 18 \log _{3} b = \log_3 \left(\dfrac{a^{3}}{b^{18}}\right) \)

Solution

Sure, let's simplify each of the given logarithmic expressions using logarithm properties such as the **Product Rule**, **Quotient Rule**, and **Power Rule**. ### 10) \( \log \left(2^{2} \cdot 3\right)^{6} \) **Step-by-Step Simplification:** 1. **Apply the Power Rule:** \(\log (A^k) = k \log A\) \[ \log \left(2^{2} \cdot 3\right)^{6} = 6 \log (2^{2} \cdot 3) \] 2. **Use the Product Rule:** \(\log (AB) = \log A + \log B\) \[ 6 \left(\log 2^{2} + \log 3\right) \] 3. **Apply the Power Rule Again:** \[ 6 \left(2 \log 2 + \log 3\right) = 12 \log 2 + 6 \log 3 \] **Final Simplified Form:** \[ \boxed{12\,\log 2\,+\,6\,\log 3} \] --- ### 12) \( \log _{4}\left(x \cdot y \cdot z^{4}\right) \) **Step-by-Step Simplification:** 1. **Use the Product Rule:** \[ \log_4 (x) + \log_4 (y) + \log_4 (z^{4}) \] 2. **Apply the Power Rule:** \[ \log_4 x + \log_4 y + 4 \log_4 z \] **Final Simplified Form:** \[ \boxed{\log_4 x\,+\,\log_4 y\,+\,4\,\log_4 z} \] --- ### 14) \( 5 \log _{3} a + 25 \log _{3} b \) **Step-by-Step Simplification:** 1. **Apply the Power Rule to each term:** \[ \log_3 a^{5} + \log_3 b^{25} \] 2. **Use the Product Rule:** \[ \log_3 (a^{5} \cdot b^{25}) \] **Final Simplified Form:** \[ \boxed{\log_3 (a^{5}b^{25})} \] --- ### 20) \( 5 \log _{8} 5 - 30 \log _{8} 12 \) **Step-by-Step Simplification:** 1. **Apply the Power Rule to each term:** \[ \log_8 5^{5} - \log_8 12^{30} \] 2. **Use the Quotient Rule:** \(\log_b A - \log_b C = \log_b \left(\frac{A}{C}\right)\) \[ \log_8 \left( \frac{5^{5}}{12^{30}} \right) \] **Final Simplified Form:** \[ \boxed{\log_8 \left(\dfrac{5^{5}}{12^{30}}\right)} \] --- ### 18) \( 10 \log _{9} a + 5 \log _{9} b \) **Step-by-Step Simplification:** 1. **Apply the Power Rule to each term:** \[ \log_9 a^{10} + \log_9 b^{5} \] 2. **Use the Product Rule:** \[ \log_9 (a^{10} \cdot b^{5}) \] **Final Simplified Form:** \[ \boxed{\log_9 (a^{10}b^{5})} \] --- ### 16) \( 3 \log _{3} a - 18 \log _{3} b \) **Step-by-Step Simplification:** 1. **Apply the Power Rule to each term:** \[ \log_3 a^{3} - \log_3 b^{18} \] 2. **Use the Quotient Rule:** \[ \log_3 \left( \frac{a^{3}}{b^{18}} \right) \] **Final Simplified Form:** \[ \boxed{\log_3 \left(\dfrac{a^{3}}{b^{18}}\right)} \] --- Each expression has been simplified using fundamental logarithmic properties. If you have any further questions or need additional explanations, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Let’s jazz up these logarithmic expressions! First up, did you know that logarithms have been around since the 16th century? They were created to help simplify complex calculations especially in navigation and astronomy. Mathematicians like John Napier and Henry Briggs made great strides, turning what could be a mountain of multiplication and division into simpler addition and subtraction. Now, when it comes to using logarithms in the real world, they pop up everywhere! From measuring the intensity of earthquakes with the Richter scale to expressing sound intensity in decibels, logarithms allow us to handle a wide-ranging set of phenomena. They help us to compress vast scales and understand magnitudes that would otherwise be tough to grasp. So next time you’re out and about, remember: those sound levels and quake readings owe a lot to logs!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy