Subtract the radical expressions. \[ s \sqrt{48}-4 \sqrt{27 s^{2}}= \]
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
First, let's simplify the radical expressions. The term \( s \sqrt{48} \) can be simplified by noticing that \( \sqrt{48} = \sqrt{16 \cdot 3} = 4\sqrt{3} \). Therefore, \( s \sqrt{48} = 4s \sqrt{3} \). Next, for the term \( 4 \sqrt{27 s^{2}} \), we can simplify it as follows: \( \sqrt{27 s^{2}} = \sqrt{9 \cdot 3} \cdot s = 3s \sqrt{3} \), so \( 4 \sqrt{27 s^{2}} = 4 \cdot 3s \sqrt{3} = 12s \sqrt{3} \). Putting this all together, we have: \[ s \sqrt{48} - 4 \sqrt{27 s^{2}} = 4s \sqrt{3} - 12s \sqrt{3} = (4s - 12s) \sqrt{3} = -8s \sqrt{3}. \] Therefore, the final result is: \[ -8s \sqrt{3}. \]