\( \begin{array}{ll}\text { (2) } & (x-1)\left(x^{2}-2 x+3\right) \\ \text { (4) } & (2 x-4)\left(x^{2}-3 x+1\right) \\ \text { (6) } & (a+2 b)\left(4 a^{2}-3 a b+b^{2}\right)\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To expand these expressions, simply apply the distributive property (also known as the FOIL method for binomials) for each case. Start with the first expression: For \((x-1)(x^{2}-2x+3)\), distribute \(x\) and \(-1\) across the polynomial: \[ x \cdot (x^2 - 2x + 3) - 1 \cdot (x^2 - 2x + 3) = x^3 - 2x^2 + 3x - x^2 + 2x - 3 = x^3 - 3x^2 + 5x - 3 \] Now, the second expression: For \((2x-4)(x^{2}-3x+1)\), distribute \(2x\) and \(-4\): \[ 2x \cdot (x^2 - 3x + 1) - 4\cdot (x^2 - 3x + 1) = 2x^3 - 6x^2 + 2x - 4x^2 + 12x - 4 = 2x^3 - 10x^2 + 14x - 4 \] Lastly, for the third expression: For \((a+2b)(4a^{2}-3ab+b^{2})\), distribute \(a\) and \(2b\): \[ a \cdot (4a^2 - 3ab + b^2) + 2b \cdot (4a^2 - 3ab + b^2) = 4a^3 - 3a^2b + ab^2 + 8ab^2 - 6ab^2 + 2b^3 = 4a^3 + 5a^2b + 2b^3 \] So the final expanded expressions are: 1. \(x^3 - 3x^2 + 5x - 3\) 2. \(2x^3 - 10x^2 + 14x - 4\) 3. \(4a^3 + 5a^2b + 2b^3\)