Question
upstudy study bank question image url

\( \begin{array}{ll}\text { (2) } & (x-1)\left(x^{2}-2 x+3\right) \\ \text { (4) } & (2 x-4)\left(x^{2}-3 x+1\right) \\ \text { (6) } & (a+2 b)\left(4 a^{2}-3 a b+b^{2}\right)\end{array} \)

Ask by Mcfarlane Romero. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \begin{array}{ll} (2) & x^{3} - 3x^{2} + 5x - 3 \\ (4) & 2x^{3} - 10x^{2} + 14x - 4 \\ (6) & 4a^{3} + 5a^{2}b - 5ab^{2} + 2b^{3} \end{array} \]

Solution

Certainly! Let's expand each of the given expressions step by step. --- ### (2) \((x - 1)(x^{2} - 2x + 3)\) **Step-by-Step Expansion:** 1. **Distribute \(x\) over the second polynomial:** \[ x \cdot x^{2} = x^{3} \] \[ x \cdot (-2x) = -2x^{2} \] \[ x \cdot 3 = 3x \] 2. **Distribute \(-1\) over the second polynomial:** \[ -1 \cdot x^{2} = -x^{2} \] \[ -1 \cdot (-2x) = 2x \] \[ -1 \cdot 3 = -3 \] 3. **Combine all the terms:** \[ x^{3} - 2x^{2} + 3x - x^{2} + 2x - 3 \] 4. **Simplify by combining like terms:** \[ x^{3} - 3x^{2} + 5x - 3 \] **Expanded Form:** \[ x^{3} - 3x^{2} + 5x - 3 \] --- ### (4) \((2x - 4)(x^{2} - 3x + 1)\) **Step-by-Step Expansion:** 1. **Distribute \(2x\) over the second polynomial:** \[ 2x \cdot x^{2} = 2x^{3} \] \[ 2x \cdot (-3x) = -6x^{2} \] \[ 2x \cdot 1 = 2x \] 2. **Distribute \(-4\) over the second polynomial:** \[ -4 \cdot x^{2} = -4x^{2} \] \[ -4 \cdot (-3x) = 12x \] \[ -4 \cdot 1 = -4 \] 3. **Combine all the terms:** \[ 2x^{3} - 6x^{2} + 2x - 4x^{2} + 12x - 4 \] 4. **Simplify by combining like terms:** \[ 2x^{3} - 10x^{2} + 14x - 4 \] **Expanded Form:** \[ 2x^{3} - 10x^{2} + 14x - 4 \] --- ### (6) \((a + 2b)(4a^{2} - 3ab + b^{2})\) **Step-by-Step Expansion:** 1. **Distribute \(a\) over the second polynomial:** \[ a \cdot 4a^{2} = 4a^{3} \] \[ a \cdot (-3ab) = -3a^{2}b \] \[ a \cdot b^{2} = a b^{2} \] 2. **Distribute \(2b\) over the second polynomial:** \[ 2b \cdot 4a^{2} = 8a^{2}b \] \[ 2b \cdot (-3ab) = -6ab^{2} \] \[ 2b \cdot b^{2} = 2b^{3} \] 3. **Combine all the terms:** \[ 4a^{3} - 3a^{2}b + a b^{2} + 8a^{2}b - 6ab^{2} + 2b^{3} \] 4. **Simplify by combining like terms:** \[ 4a^{3} + ( -3a^{2}b + 8a^{2}b ) + ( a b^{2} - 6ab^{2} ) + 2b^{3} \] \[ 4a^{3} + 5a^{2}b - 5ab^{2} + 2b^{3} \] **Expanded Form:** \[ 4a^{3} + 5a^{2}b - 5ab^{2} + 2b^{3} \] --- If you have any specific questions or need further elaboration on any of these expansions, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To expand these expressions, simply apply the distributive property (also known as the FOIL method for binomials) for each case. Start with the first expression: For \((x-1)(x^{2}-2x+3)\), distribute \(x\) and \(-1\) across the polynomial: \[ x \cdot (x^2 - 2x + 3) - 1 \cdot (x^2 - 2x + 3) = x^3 - 2x^2 + 3x - x^2 + 2x - 3 = x^3 - 3x^2 + 5x - 3 \] Now, the second expression: For \((2x-4)(x^{2}-3x+1)\), distribute \(2x\) and \(-4\): \[ 2x \cdot (x^2 - 3x + 1) - 4\cdot (x^2 - 3x + 1) = 2x^3 - 6x^2 + 2x - 4x^2 + 12x - 4 = 2x^3 - 10x^2 + 14x - 4 \] Lastly, for the third expression: For \((a+2b)(4a^{2}-3ab+b^{2})\), distribute \(a\) and \(2b\): \[ a \cdot (4a^2 - 3ab + b^2) + 2b \cdot (4a^2 - 3ab + b^2) = 4a^3 - 3a^2b + ab^2 + 8ab^2 - 6ab^2 + 2b^3 = 4a^3 + 5a^2b + 2b^3 \] So the final expanded expressions are: 1. \(x^3 - 3x^2 + 5x - 3\) 2. \(2x^3 - 10x^2 + 14x - 4\) 3. \(4a^3 + 5a^2b + 2b^3\)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy