Question
upstudy study bank question image url

Find \( f+g, f-g \), fg and \( \frac{1}{g} \) Determine the domain for each function. \( f(x)=5 x+8, g(x)=x+6 \) What is the domain of \( f+g \) ? A. The domain of \( f+g \) is \( \{\quad\} \) (Use a comma to separate answers as needed.) C. The domain of \( f+g \) is \( \varnothing \). ( \( f-g)(x)=4 x+2 \) (Simplify your answer.) What is the domain of \( f-g \) ? B. The domain of \( f-g \) is \( (-\infty, \infty) \). (Type your answer in interval notation.) C. Type your answer in interval notation.) C. The domain of \( f-g \) is \( \varnothing \) ( \( f g)(x)=\square \) (Simplify your answer.)

Ask by Deleon Summers. in the United States
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Summary of Results:** - **\( f + g \):** - **Expression:** \( 6x + 14 \) - **Domain:** All real numbers - **Answer:** \( (-\infty, \infty) \) - **\( f - g \):** - **Expression:** \( 4x + 2 \) - **Domain:** All real numbers - **Answer:** \( (-\infty, \infty) \) - **\( f \cdot g \):** - **Expression:** \( 5x^2 + 38x + 48 \) - **Domain:** All real numbers - **Answer:** \( (-\infty, \infty) \) - **\( \frac{1}{g} \):** - **Expression:** \( \frac{1}{x + 6} \) - **Domain:** All real numbers except \( x = -6 \) - **Answer:** \( (-\infty, -6) \cup (-6, \infty) \) **Final Answers:** - **A.** The domain of \( f + g \) is \( (-\infty, \infty) \). - **B.** The domain of \( f - g \) is \( (-\infty, \infty) \). - **\( f \cdot g \) simplifies to \( 5x^2 + 38x + 48 \).** - **The domain of \( \frac{1}{g} \) is \( (-\infty, -6) \cup (-6, \infty) \).**

Solution

Let's analyze the given functions and perform the required operations step by step. **Given Functions:** - \( f(x) = 5x + 8 \) - \( g(x) = x + 6 \) ### 1. \( f + g \) **Calculation:** \[ (f + g)(x) = f(x) + g(x) = (5x + 8) + (x + 6) = 6x + 14 \] **Domain:** Both \( f(x) \) and \( g(x) \) are linear functions defined for all real numbers. \[ \text{Domain of } f + g: \quad (-\infty, \infty) \] **Answer:** **A.** The domain of \( f + g \) is \( (-\infty, \infty) \). --- ### 2. \( f - g \) **Calculation:** \[ (f - g)(x) = f(x) - g(x) = (5x + 8) - (x + 6) = 4x + 2 \] **Domain:** Both \( f(x) \) and \( g(x) \) are defined for all real numbers. \[ \text{Domain of } f - g: \quad (-\infty, \infty) \] **Answer:** **B.** The domain of \( f - g \) is \( (-\infty, \infty) \). --- ### 3. \( f \cdot g \) **Calculation:** \[ (fg)(x) = f(x) \cdot g(x) = (5x + 8)(x + 6) \] Expanding the expression: \[ = 5x \cdot x + 5x \cdot 6 + 8 \cdot x + 8 \cdot 6 = 5x^2 + 30x + 8x + 48 = 5x^2 + 38x + 48 \] **Domain:** Both \( f(x) \) and \( g(x) \) are defined for all real numbers. \[ \text{Domain of } f \cdot g: \quad (-\infty, \infty) \] **Answer:** \[ (fg)(x) = 5x^2 + 38x + 48 \] --- ### 4. \( \frac{1}{g} \) **Calculation:** \[ \frac{1}{g}(x) = \frac{1}{x + 6} \] **Domain:** The function \( \frac{1}{g}(x) \) is undefined when \( g(x) = 0 \): \[ x + 6 \ne 0 \implies x \ne -6 \] Thus, the domain excludes \( x = -6 \). \[ \text{Domain of } \frac{1}{g}: \quad (-\infty, -6) \cup (-6, \infty) \] **Answer:** \[ \frac{1}{g}(x) = \frac{1}{x + 6}, \quad \text{Domain: } (-\infty, -6) \cup (-6, \infty) \] --- ### Summary of Domains: - **\( f + g \):** \( (-\infty, \infty) \) - **\( f - g \):** \( (-\infty, \infty) \) - **\( f \cdot g \):** \( (-\infty, \infty) \) - **\( \frac{1}{g} \):** \( (-\infty, -6) \cup (-6, \infty) \) If you have specific multiple-choice options you'd like to verify, feel free to provide them, and I can help determine the correct answers based on the above explanations.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

First, let's find \( f + g \), \( f - g \), and \( fg \). 1. **Finding \( f + g \):** \[ f + g = (5x + 8) + (x + 6) = 6x + 14 \] 2. **Finding \( f - g \):** \[ f - g = (5x + 8) - (x + 6) = 5x + 8 - x - 6 = 4x + 2 \] 3. **Finding \( fg \):** \[ fg = (5x + 8)(x + 6) = 5x^2 + 30x + 8x + 48 = 5x^2 + 38x + 48 \] Now let's examine the domains. For \( f + g \) and \( f - g \), since both functions are polynomials (which are defined for all real numbers), their domains are all real numbers. - \( f + g \): - The domain is \( (-\infty, \infty) \). - \( f - g \): - The domain is \( (-\infty, \infty) \). - \( fg \): - The domain is also \( (-\infty, \infty) \). Lastly, for \( \frac{1}{g} \), since \( g(x) = x + 6 \), we need to make sure \( g(x) \neq 0 \): \[ x + 6 \neq 0 \implies x \neq -6 \] Thus, the domain of \( \frac{1}{g} = \frac{1}{x+6} \) is: \[ (-\infty, -6) \cup (-6, \infty) \] Let’s summarize the answers: - \( f + g \): \( 6x + 14 \) with domain \( (-\infty, \infty) \) - \( f - g \): \( 4x + 2 \) with domain \( (-\infty, \infty) \) - \( fg \): \( 5x^2 + 38x + 48 \) with domain \( (-\infty, \infty) \) - \( \frac{1}{g} \): Domain \( (-\infty, -6) \cup (-6, \infty) \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy