Question
upstudy study bank question image url

Rationalize the denominator in the following and simplify completely. Assume all variables under the radicals are nonnegative. \( \frac{\sqrt{x}}{\sqrt{x}-2}=\square \)

Ask by Bartlett Medina. in the United States
Nov 17,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \frac{x+2\sqrt{x}}{x-4} \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

To rationalize the denominator of \( \frac{\sqrt{x}}{\sqrt{x}-2} \), multiply both the numerator and the denominator by the conjugate of the denominator, which is \( \sqrt{x} + 2 \): \[ \frac{\sqrt{x}(\sqrt{x} + 2)}{(\sqrt{x}-2)(\sqrt{x}+2)} = \frac{\sqrt{x}(\sqrt{x}+2)}{x - 4} \] Now simplify the numerator: \[ \sqrt{x}(\sqrt{x}+2) = x + 2\sqrt{x} \] Putting it all together gives us: \[ \frac{x + 2\sqrt{x}}{x - 4} \] And there you have it, completely simplified with a rationalized denominator!

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy