Question
upstudy study bank question image url

Siendo \( \mathrm{S}, \mathrm{C} \) y R lo convencional, determinar el número de radianes er \( \frac{C^{2}-S^{2}}{C^{2}+S^{2}}=\frac{R}{181} \)

Ask by Vega Perkins. in Peru
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El número de radianes es \( \frac{181C^{2}-181S^{2}}{C^{2}+S^{2}} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

Para resolver la ecuación dada \( \frac{C^{2}-S^{2}}{C^{2}+S^{2}}=\frac{R}{181} \), se debe expresar \( C \) y \( S \) en términos de \( R \). Primero, como \( C = \cos(\theta) \) y \( S = \sin(\theta) \), se puede sustituir en la ecuación: \[ \frac{\cos^2(\theta) - \sin^2(\theta)}{\cos^2(\theta) + \sin^2(\theta)} = \frac{R}{181} \] Usando la identidad \( \cos^2(\theta) + \sin^2(\theta) = 1 \), simplificamos: \[ \frac{\cos^2(\theta) - \sin^2(\theta)}{1} = \frac{R}{181} \] \(\cos^2(\theta) - \sin^2(\theta)\) también se puede expresar como \(\cos(2\theta)\), así que tenemos: \[ \cos(2\theta) = \frac{R}{181} \] Para encontrar el número de radianes \( 2\theta \), tomamos el arco coseno: \[ 2\theta = \cos^{-1}\left(\frac{R}{181}\right) \] Entonces, para calcular \( \theta \): \[ \theta = \frac{1}{2} \cos^{-1}\left(\frac{R}{181}\right) \] Esto da el valor de \( \theta \) en radianes basado en el valor de \( R \) que se proporcione (siempre asegurándonos de que \( R \) esté en el rango \([-181, 181]\)).

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy