Question
upstudy study bank question image url

Question \( 7 \mid 4 \) marks] The job of a chef culinary artist involves more than simply cooking food; it is about crafting an entire sensory experience where the five senses in human perception is in use. If a chef culinary artist's most used sense is Sight, the probability of that chef's clients' dining experience being of high quality is \( 71 \% \). If a chef culinary artist's most used sense is Hearing, the probability of the dining experience being of high quality is 23\%. If the most used sense is Smell, the probability of the dining experience being of high quality is \( 43 \% \); however, if the most used sense is Taste, the probability of the high-quality dining experience is \( 89 \% \). If the most used sense of the chef culinary artist is Touch, the likelihood of the high-quality dining experience is only \( 17 \% \). Of a batch of chef culinary artists, a survey revealed that the most used sense was Sight for \( 17 \% \) of them, Hearing for \( 2 \% \) of them, Smell for \( 31 \% \), Taste for \( 39 \% \), and Touch for \( 11 \% \) of them. i. A chef culinary artist is selected from the batch to manage the dining experience of some clients. Given that the chef's clients' dining experience is of high quality, what is the probability that the most used sense of the chef culinary artist was Sight or Taste?

Ask by Lowe Deleon. in Jamaica
Nov 13,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

The probability that the most used sense of the chef culinary artist was Sight or Taste given a high-quality dining experience is approximately \( 0.749 \) or \( 74.9\% \).

Solution

To find the probability that the most used sense of the chef culinary artist was Sight or Taste given that the dining experience is of high quality, we can use Bayes' theorem and the law of total probability. Let: - \( S \): the event that the most used sense is Sight - \( T \): the event that the most used sense is Taste - \( H \): the event that the dining experience is of high quality We need to find \( P(S \cup T \mid H) \), which can be calculated using the formula: \[ P(S \cup T \mid H) = P(S \mid H) + P(T \mid H) \] Using Bayes' theorem, we can express \( P(S \mid H) \) and \( P(T \mid H) \) as follows: \[ P(S \mid H) = \frac{P(H \mid S) P(S)}{P(H)} \] \[ P(T \mid H) = \frac{P(H \mid T) P(T)}{P(H)} \] ### Step 1: Calculate \( P(H) \) We first need to calculate \( P(H) \), the total probability of a high-quality dining experience. This can be calculated using the law of total probability: \[ P(H) = P(H \mid S) P(S) + P(H \mid H) P(H) + P(H \mid Sm) P(Sm) + P(H \mid T) P(T) + P(H \mid To) P(To) \] Where: - \( P(H \mid S) = 0.71 \) (probability of high quality given Sight) - \( P(H \mid H) = 0.23 \) (probability of high quality given Hearing) - \( P(H \mid Sm) = 0.43 \) (probability of high quality given Smell) - \( P(H \mid T) = 0.89 \) (probability of high quality given Taste) - \( P(H \mid To) = 0.17 \) (probability of high quality given Touch) And the probabilities of each sense being the most used are: - \( P(S) = 0.17 \) - \( P(H) = 0.02 \) - \( P(Sm) = 0.31 \) - \( P(T) = 0.39 \) - \( P(To) = 0.11 \) Now we can calculate \( P(H) \): \[ P(H) = (0.71 \times 0.17) + (0.23 \times 0.02) + (0.43 \times 0.31) + (0.89 \times 0.39) + (0.17 \times 0.11) \] Calculating each term: 1. \( 0.71 \times 0.17 = 0.1207 \) 2. \( 0.23 \times 0.02 = 0.0046 \) 3. \( 0.43 \times 0.31 = 0.1333 \) 4. \( 0.89 \times 0.39 = 0.3471 \) 5. \( 0.17 \times 0.11 = 0.0187 \) Now summing these values: \[ P(H) = 0.1207 + 0.0046 + 0.1333 + 0.3471 + 0.0187 = 0.6244 \] ### Step 2: Calculate \( P(S \mid H) \) and \( P(T \mid H) \) Now we can calculate \( P(S \mid H) \) and \( P(T \mid H) \): \[ P(S \mid H) = \frac{P(H \mid S) P(S)}{P(H)} = \frac{0.71 \times 0.17}{0.6244} = \frac{0.1207}{0.6244} \approx 0.193 \] \[ P(T \mid H) = \frac{P(H \mid T) P(T)}{P(H)} = \frac{0.89 \times 0.39}{0.6244} = \frac{0.3471}{0.6244} \approx 0.556 \] ### Step 3: Calculate \( P(S \cup T \mid H) \) Now we can find \( P(S \cup T \mid H) \): \[ P(S \cup T \mid H) = P(S \mid H) + P(T \mid H) \approx 0.193 + 0.556 \approx 0.749 \] ### Final Answer Thus, the probability that the most used sense of the chef culinary artist was Sight or Taste given that the dining experience is of high quality is approximately \( 0.749 \) or \( 74.9\% \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the probability that the most used sense of the chef culinary artist was Sight or Taste, given that the dining experience is of high quality, we can use Bayes' theorem. We'll first need the total probability of a high-quality dining experience, which is derived from the probabilities given for each sense: 1. **Calculating total probability of high-quality dining experience** \( P(H) \): \[ P(H) = P(H | \text{Sight}) \cdot P(\text{Sight}) + P(H | \text{Hearing}) \cdot P(\text{Hearing}) + P(H | \text{Smell}) \cdot P(\text{Smell}) + P(H | \text{Taste}) \cdot P(\text{Taste}) + P(H | \text{Touch}) \cdot P(\text{Touch}) \] \[ P(H) = (0.71 \cdot 0.17) + (0.23 \cdot 0.02) + (0.43 \cdot 0.31) + (0.89 \cdot 0.39) + (0.17 \cdot 0.11) \] Calculate this to find \( P(H) \). 2. **Finding \( P(Sight \text{ or } Taste | H) \) using Bayes' theorem**: - For Sight: \[ P(H | \text{Sight}) \cdot P(\text{Sight}) = 0.71 \cdot 0.17 \] - For Taste: \[ P(H | \text{Taste}) \cdot P(\text{Taste}) = 0.89 \cdot 0.39 \] Then sum both results and divide by \( P(H) \): \[ P(Sight \text{ or } Taste | H) = \frac{P(H | \text{Sight}) \cdot P(\text{Sight}) + P(H | \text{Taste}) \cdot P(\text{Taste})}{P(H)} \] Calculating this gives you the desired probability! In fun terms: It's like assembling a pizza with the perfect toppings—each sense contributes its unique flavor to the dining experience. And just like with flavors, some combinations yield a much tastier result than others!

Latest Probability Questions

1) Назвіть подію, протилежну до події \( A \) - «усі електролампочки перегоріли». А) «Жюодна електролампочка не перегоріла»; Б) «половина електролампочок перегоріла»; В) «хоча б одна електролампочка перегоріла»; Г) «хоча б одна електролампочка не перегоріла». 2) Імовірність хоча б одного влучення в ціль під час трьох пострілів дорівнює 0,6. Яка ймовірність усіх трьох промахів? А) 0,3; Б) 0,2; В) 0,4; Г) 0,5. 3) На олімпіаді м математики нашу школу представляють Петренко та Сидоренко. Ймовірність того, що Петренко посяде перше міс- це, дорівнює 0,\( 3 ; \) ймовірність того, що Сидоренко посяде перше місце, дорівнює 0,2 . Яка ймовірність того, що учень нашої шко- ли посяде перше місце? А) 0,\( 5 ; \) Б) 0,\( 06 ; \) В) 0,\( 44 ; \) Г) \( 0,56 \). 4) \( 3 і \) скриньки, у якій лежать шість білих і вісім чорних кульок, навмання вибирають одну. Яка ймовірність того, що ця кулька буде білою? А) \( \frac{1}{14} \); Б) \( \frac{3}{7} \); В) \( \frac{1}{6} ; \) Г) \( \frac{7}{50} \).
Probability Germany Jan 22, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy