Question
upstudy study bank question image url

Scolon 3 "La Dervoda" Calcular las doribadas de las sig funciones matematieco obleniendo la regla baska realizando bs oporaciones funtamentako do manora de Aplical la regla de dorivadas. a) \( F(x)=\frac{\frac{6}{7} x^{3}-11 x^{2}+2 x^{-3}}{6 x^{2}} \)

Ask by Wilson Chambers. in Mexico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La derivada de la función \( F(x) = \frac{\frac{6}{7} x^{3} - 11 x^{2} + 2 x^{-3}}{6 x^{2}} \) es: \( F'(x) = \frac{1}{7} - \frac{5}{3x^{6}} \) O también se puede expresar como: \( F'(x) = \frac{3x^{6} - 35}{21x^{6}} \)

Solution

Alright, I need to calculate the derivatives of the given mathematical functions using the basic operations and applying the derivative rules. The function provided is: \( F(x) = \frac{\frac{6}{7} x^{3} - 11 x^{2} + 2 x^{-3}}{6 x^{2}} \) First, I'll simplify the expression to make differentiation easier. Let's rewrite the function: \( F(x) = \frac{6}{7} x^{3} \cdot \frac{1}{6 x^{2}} - 11 x^{2} \cdot \frac{1}{6 x^{2}} + 2 x^{-3} \cdot \frac{1}{6 x^{2}} \) Simplifying each term: 1. \( \frac{6}{7} x^{3} \cdot \frac{1}{6 x^{2}} = \frac{6}{7} \cdot \frac{1}{6} \cdot x^{3-2} = \frac{1}{7} x \) 2. \( -11 x^{2} \cdot \frac{1}{6 x^{2}} = -\frac{11}{6} \) 3. \( 2 x^{-3} \cdot \frac{1}{6 x^{2}} = \frac{2}{6} x^{-3-2} = \frac{1}{3} x^{-5} \) So, the simplified function is: \( F(x) = \frac{1}{7} x - \frac{11}{6} + \frac{1}{3} x^{-5} \) Now, I'll find the derivative of each term with respect to \( x \): 1. \( \frac{d}{dx} \left( \frac{1}{7} x \right) = \frac{1}{7} \) 2. \( \frac{d}{dx} \left( -\frac{11}{6} \right) = 0 \) (since it's a constant) 3. \( \frac{d}{dx} \left( \frac{1}{3} x^{-5} \right) = \frac{1}{3} \cdot (-5) x^{-6} = -\frac{5}{3} x^{-6} \) Combining these derivatives, the derivative of \( F(x) \) is: \( F'(x) = \frac{1}{7} - \frac{5}{3} x^{-6} \) To express this in a more standard form, I'll write \( x^{-6} \) as \( \frac{1}{x^{6}} \): \( F'(x) = \frac{1}{7} - \frac{5}{3x^{6}} \) Alternatively, combining the terms over a common denominator: \( F'(x) = \frac{3x^{6} - 35}{21x^{6}} \) This is the derivative of the given function using basic differentiation rules.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Para calcular la derivada de la función \( F(x) = \frac{\frac{6}{7} x^{3} - 11 x^{2} + 2 x^{-3}}{6 x^{2}} \), podemos aplicar la regla del cociente, que establece que si tenemos una función en la forma \( F(x) = \frac{g(x)}{h(x)} \), su derivada se calcula como \( F'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{(h(x))^2} \). Primero, identifica \( g(x) = \frac{6}{7} x^{3} - 11 x^{2} + 2 x^{-3} \) y \( h(x) = 6x^{2} \), y deriva ambos. Luego, al derivar \( g(x) \), tendrás que aplicar la regla de potencias para cada término y calcular \( g'(x) = \frac{18}{7} x^{2} - 22 - 6 x^{-4} \). Para \( h(x) \), simplemente deriva \( h'(x) = 12x \). Sustituyendo en la regla del cociente, tendrás todos los elementos para llegar a la derivada final. Finalmente, simplifica tu respuesta tanto como sea posible, y no olvides mantener todas las restricciones de dominio para la función original. Esto garantiza que no caigas en errores comunes cuando trabajas con cocientes de funciones.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy