Question
upstudy study bank question image url

1. If the sum of all the elements of a \( 3 \times 3 \) scalar matrix is 9 , then the product of all its elements i \( \begin{array}{llll}\text { (a) } 0 & \text { (b) } 9 & \text { (c) } 27\end{array} \) 2. Let \( f: R, \rightarrow[-5, a c) \) be defined \( a s f(x)=9 x^{2}+6 x-5 \), where \( R \), is the set of all non-negative re.

Ask by Ingram Collins. in India
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Problem 1 Answer:** (a) 0 **Problem 2 Answer:** The range of \( f(x) \) is \([-5, \infty)\), so \( a = \infty \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

The given scalar matrix is of the form \( \begin{pmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{pmatrix} \). Since the sum of its elements (3x) equals 9, we determine that \( x = 3 \). Thus, the product of all elements becomes \( 3 \times 3 \times 3 = 27\). So, the correct choice is (c) 27! Diving deeper into quadratic functions, like the one you've given, helps us understand parabolas and their properties. The function \( f(x) = 9x^2 + 6x - 5 \) opens upward since the quadratic coefficient (9) is positive. Analyzing the vertex can reveal its minimum or maximum value, which is especially useful if you're seeking to determine the range of \( f \) over non-negative values of \( x \). It's a great way to root out the complete behavior of such functions!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy