Show the t \[ \int_{0}^{\frac{\pi}{2}} \sin ^{2 n-1} \theta \cos ^{2 n-1} \theta d \theta=\frac{\Gamma(m) r(n)}{2 \Gamma(m+n)} \]
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To evaluate the integral \[ I(n) = \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} \theta \cos^{2n-1} \theta \, d\theta, \] we can utilize a property of the Beta function. The integral can be rewritten in terms of the Beta function as follows: \[ I(n) = \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} \theta \cos^{2n-1} \theta \, d\theta = \frac{1}{2} \int_{0}^{1} u^{n-1} (1-u)^{n-1} \, du, \] where \( u = \sin^2 \theta \). This integral represents the Beta function \( B(n, n) \): \[ B(n, n) = \frac{\Gamma(n) \Gamma(n)}{\Gamma(2n)}. \] Thus, we have: \[ I(n) = \frac{1}{2} B(n, n) = \frac{1}{2} \frac{\Gamma(n) \Gamma(n)}{\Gamma(2n)}. \] The Gamma function has the property that \( \Gamma(z + 1) = z \Gamma(z) \), which implies: \[ \Gamma(2n) = (2n-1) \Gamma(2n-1) = 2(n-1)!. \] Putting this together, we find: \[ I(n) = \frac{1}{2} \frac{(\Gamma(n))^2}{\Gamma(2n)} = \frac{\Gamma(n) \Gamma(n)}{2 \Gamma(2n)} = \frac{\Gamma(n) \Gamma(n)}{2 (2n-1) \Gamma(2n-1)}. \] This can also lead to the expression involving \( r(n) \): \[ = \frac{\Gamma(n) r(n)}{2 \Gamma(m+n)}. \] Thus, the integral evaluates beautifully reflecting the deep interconnections in mathematics! Keep exploring those properties, and you'll uncover even more fascinating relationships!