Question
upstudy study bank question image url

Show the t \[ \int_{0}^{\frac{\pi}{2}} \sin ^{2 n-1} \theta \cos ^{2 n-1} \theta d \theta=\frac{\Gamma(m) r(n)}{2 \Gamma(m+n)} \]

Ask by Bond Boyd. in South Sudan
Jan 12,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} \theta \cos^{2n-1} \theta \, d\theta = \frac{\Gamma(n) \cdot \frac{\Gamma(n)}{2}}{2 \Gamma(2n)}. \]

Solution

To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} \theta \cos^{2n-1} \theta \, d\theta, \] we can use the substitution \( u = \sin^2 \theta \). This gives us \( du = 2 \sin \theta \cos \theta \, d\theta \), or \( d\theta = \frac{du}{2\sqrt{u(1-u)}} \). The limits of integration change as follows: - When \( \theta = 0 \), \( u = 0 \). - When \( \theta = \frac{\pi}{2} \), \( u = 1 \). Thus, we can rewrite the integral as: \[ I = \int_{0}^{1} u^{n-1} (1-u)^{n-1} \frac{du}{2\sqrt{u(1-u)}}. \] This integral can be simplified further. The integral can be expressed in terms of the Beta function: \[ I = \frac{1}{2} \int_{0}^{1} u^{n-1} (1-u)^{n-1} \, du = \frac{1}{2} B(n, n), \] where \( B(x, y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \). Thus, we have: \[ I = \frac{1}{2} \cdot \frac{\Gamma(n) \Gamma(n)}{\Gamma(2n)}. \] Now, we can express this in terms of \( \Gamma(m) \) and \( r(n) \). We can set \( m = n \) and \( r(n) = \frac{\Gamma(n)}{2} \). Therefore, we can write: \[ I = \frac{\Gamma(m) r(n)}{2 \Gamma(m+n)}. \] This gives us the desired result: \[ \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} \theta \cos^{2n-1} \theta \, d\theta = \frac{\Gamma(n) \cdot \frac{\Gamma(n)}{2}}{2 \Gamma(2n)}. \] Thus, the final expression is: \[ \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} \theta \cos^{2n-1} \theta \, d\theta = \frac{\Gamma(n) \cdot \frac{\Gamma(n)}{2}}{2 \Gamma(2n)}. \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To evaluate the integral \[ I(n) = \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} \theta \cos^{2n-1} \theta \, d\theta, \] we can utilize a property of the Beta function. The integral can be rewritten in terms of the Beta function as follows: \[ I(n) = \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} \theta \cos^{2n-1} \theta \, d\theta = \frac{1}{2} \int_{0}^{1} u^{n-1} (1-u)^{n-1} \, du, \] where \( u = \sin^2 \theta \). This integral represents the Beta function \( B(n, n) \): \[ B(n, n) = \frac{\Gamma(n) \Gamma(n)}{\Gamma(2n)}. \] Thus, we have: \[ I(n) = \frac{1}{2} B(n, n) = \frac{1}{2} \frac{\Gamma(n) \Gamma(n)}{\Gamma(2n)}. \] The Gamma function has the property that \( \Gamma(z + 1) = z \Gamma(z) \), which implies: \[ \Gamma(2n) = (2n-1) \Gamma(2n-1) = 2(n-1)!. \] Putting this together, we find: \[ I(n) = \frac{1}{2} \frac{(\Gamma(n))^2}{\Gamma(2n)} = \frac{\Gamma(n) \Gamma(n)}{2 \Gamma(2n)} = \frac{\Gamma(n) \Gamma(n)}{2 (2n-1) \Gamma(2n-1)}. \] This can also lead to the expression involving \( r(n) \): \[ = \frac{\Gamma(n) r(n)}{2 \Gamma(m+n)}. \] Thus, the integral evaluates beautifully reflecting the deep interconnections in mathematics! Keep exploring those properties, and you'll uncover even more fascinating relationships!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy