Answer
### Problema 6: Resistencia en Paralelo
Para dos resistencias \( R_{1} \) y \( R_{2} = 4 \) ohmios conectadas en paralelo, la resistencia total \( R \) es al menos \( 2.5 \) ohmios. Calculamos \( R_{1} \) como \( 6.67 \) ohmios.
### Problema 7: Conjuntos Solución
a) \( |4 + 7x| = 5 \): \( x = -\frac{9}{7}, \frac{1}{7} \)
b) \( |x - 8| = |5x - 16| \): \( x = 2, 4 \)
c) \( \left|x + \frac{2}{3}\right| = |-2x + 3| \): \( x = \frac{7}{9}, \frac{11}{3} \)
d) \( 23 - |8x| = 7 - x^{2} \): \( x = -4, 4 \)
e) \( |9 - x| \leq \sqrt{5} \): \( -\sqrt{5} + 9 \leq x \leq \sqrt{5} + 9 \)
f) \( 12 - |x + 5| < 0 \): \( x < -17 \) o \( x > 7 \)
g) \( 49 - 7x^{2} \leq 0 \): \( x \leq -\sqrt{7} \) o \( x \geq \sqrt{7} \)
h) \( -1 + \left(x + \frac{5}{3}\right)^{2} \leq 2 \): \( -\frac{3\sqrt{3} + 5}{3} \leq x \leq \frac{3\sqrt{3} - 5}{3} \)
i) \( \frac{x + 9}{|x - 5| x^{5} + 0} < 0 \): \( -9 < x < 0 \)
### Gráficas
Las gráficas de los conjuntos solución se representan en la recta real según los intervalos y puntos calculados.
Solution
Solve the inequality by following steps:
- step0: Solve for \(x\):
\(12-\left|x+5\right|<0\)
- step1: Rearrange the terms:
\(-\left|x+5\right|<-12\)
- step2: Calculate:
\(\left|x+5\right|>12\)
- step3: Separate into possible cases:
\(\begin{align}&x+5>12\\&x+5<-12\end{align}\)
- step4: Solve the inequality:
\(\begin{align}&x>7\\&x<-17\end{align}\)
- step5: Find the union:
\(x \in \left(-\infty,-17\right)\cup \left(7,+\infty\right)\)
Solve the equation \( |9-x| \leq \sqrt{5} \).
Solve the inequality by following steps:
- step0: Solve for \(x\):
\(\left|9-x\right|\leq \sqrt{5}\)
- step1: Separate into possible cases:
\(\left\{ \begin{array}{l}9-x\leq \sqrt{5}\\9-x\geq -\sqrt{5}\end{array}\right.\)
- step2: Solve the inequality:
\(\left\{ \begin{array}{l}x\geq -\sqrt{5}+9\\x\leq \sqrt{5}+9\end{array}\right.\)
- step3: Find the intersection:
\(-\sqrt{5}+9\leq x\leq \sqrt{5}+9\)
Solve the equation \( |4+7x|=5 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\left|4+7x\right|=5\)
- step1: Separate into possible cases:
\(\begin{align}&4+7x=5\\&4+7x=-5\end{align}\)
- step2: Solve the equation:
\(\begin{align}&x=\frac{1}{7}\\&x=-\frac{9}{7}\end{align}\)
- step3: Rewrite:
\(x_{1}=-\frac{9}{7},x_{2}=\frac{1}{7}\)
Solve the equation \( 49-7x^{2} \leq 0 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(49-7x^{2}\leq 0\)
- step1: Rewrite the expression:
\(49-7x^{2}=0\)
- step2: Move the constant to the right side:
\(-7x^{2}=0-49\)
- step3: Remove 0:
\(-7x^{2}=-49\)
- step4: Change the signs:
\(7x^{2}=49\)
- step5: Divide both sides:
\(\frac{7x^{2}}{7}=\frac{49}{7}\)
- step6: Divide the numbers:
\(x^{2}=7\)
- step7: Simplify the expression:
\(x=\pm \sqrt{7}\)
- step8: Separate into possible cases:
\(\begin{align}&x=\sqrt{7}\\&x=-\sqrt{7}\end{align}\)
- step9: Determine the test intervals:
\(\begin{align}&x<-\sqrt{7}\\&-\sqrt{7}\sqrt{7}\end{align}\)
- step10: Choose a value:
\(\begin{align}&x_{1}=-4\\&x_{2}=0\\&x_{3}=4\end{align}\)
- step11: Test the chosen value:
\(\begin{align}&x<-\sqrt{7}\textrm{ }\textrm{is the solution}\\&-\sqrt{7}\sqrt{7}\textrm{ }\textrm{is the solution}\end{align}\)
- step12: Include the critical value:
\(\begin{align}&x\leq -\sqrt{7}\textrm{ }\textrm{is the solution}\\&x\geq \sqrt{7}\textrm{ }\textrm{is the solution}\end{align}\)
- step13: The final solution is \(x \in \left(-\infty,-\sqrt{7}\right]\cup \left[\sqrt{7},+\infty\right):\)
\(x \in \left(-\infty,-\sqrt{7}\right]\cup \left[\sqrt{7},+\infty\right)\)
Solve the equation \( |x-8|=|5x-16| \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\left|x-8\right|=\left|5x-16\right|\)
- step1: Evaluate:
\(\begin{align}&x-8=5x-16\\&x-8=-\left(5x-16\right)\end{align}\)
- step2: Calculate:
\(\begin{align}&x=2\\&x=4\end{align}\)
- step3: Rewrite:
\(x_{1}=2,x_{2}=4\)
Solve the equation \( 23-|8x|=7-x^{2} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(23-\left|8x\right|=7-x^{2}\)
- step1: Move the expression to the left side:
\(23-\left|8x\right|-\left(7-x^{2}\right)=0\)
- step2: Subtract the terms:
\(16-\left|8x\right|+x^{2}=0\)
- step3: Separate into possible cases:
\(\begin{align}&16-8x+x^{2}=0,8x\geq 0\\&16-\left(-8x\right)+x^{2}=0,8x<0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=4,x\geq 0\\&x=-4,x<0\end{align}\)
- step5: Find the intersection:
\(\begin{align}&x=4\\&x=-4\end{align}\)
- step6: Rewrite:
\(x_{1}=-4,x_{2}=4\)
Solve the equation \( \left|x+\frac{2}{3}\right|=|-2x+3| \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\left|x+\frac{2}{3}\right|=\left|-2x+3\right|\)
- step1: Rewrite the expression:
\(\left|x+\frac{2}{3}\right|=\left|2x-3\right|\)
- step2: Evaluate:
\(\begin{align}&x+\frac{2}{3}=2x-3\\&x+\frac{2}{3}=-\left(2x-3\right)\end{align}\)
- step3: Calculate:
\(\begin{align}&x=\frac{11}{3}\\&x=\frac{7}{9}\end{align}\)
- step4: Rewrite:
\(x_{1}=\frac{7}{9},x_{2}=\frac{11}{3}\)
Solve the equation \( \frac{x+9}{|x-5| x^{5}+0}<0 \).
Solve the inequality by following steps:
- step0: Solve the inequality by separating into cases:
\(\frac{x+9}{\left|x-5\right|\times x^{5}+0}<0\)
- step1: Find the domain:
\(\frac{x+9}{\left|x-5\right|\times x^{5}+0}<0,x \in \left(-\infty,0\right)\cup \left(0,5\right)\cup \left(5,+\infty\right)\)
- step2: Simplify:
\(\frac{x+9}{x^{5}\left|x-5\right|}<0\)
- step3: Separate into possible cases:
\(\begin{align}&\left\{ \begin{array}{l}x+9>0\\x^{5}\left|x-5\right|<0\end{array}\right.\\&\left\{ \begin{array}{l}x+9<0\\x^{5}\left|x-5\right|>0\end{array}\right.\end{align}\)
- step4: Solve the inequality:
\(\begin{align}&\left\{ \begin{array}{l}x>-9\\x<0\end{array}\right.\\&\left\{ \begin{array}{l}x<-9\\x \in \left(0,5\right)\cup \left(5,+\infty\right)\end{array}\right.\end{align}\)
- step5: Find the intersection:
\(\begin{align}&-9\frac{3\sqrt{3}-5}{3}\end{align}\)
- step11: Choose a value:
\(\begin{align}&x_{1}=-4\\&x_{2}=-2\\&x_{3}=1\end{align}\)
- step12: Test the chosen value:
\(\begin{align}&x<-\frac{3\sqrt{3}+5}{3}\textrm{ }\textrm{is not a solution}\\&-\frac{3\sqrt{3}+5}{3}\frac{3\sqrt{3}-5}{3}\textrm{ }\textrm{is not a solution}\end{align}\)
- step13: Include the critical value:
\(\begin{align}&-\frac{3\sqrt{3}+5}{3}\leq x\leq \frac{3\sqrt{3}-5}{3}\textrm{ }\textrm{is the solution}\end{align}\)
- step14: The final solution is \(-\frac{3\sqrt{3}+5}{3}\leq x\leq \frac{3\sqrt{3}-5}{3}:\)
\(-\frac{3\sqrt{3}+5}{3}\leq x\leq \frac{3\sqrt{3}-5}{3}\)
### Problema 6: Resistencia en Paralelo
La ecuación que relaciona las resistencias en paralelo es:
\[
\frac{1}{R} = \frac{1}{R_{1}} + \frac{1}{R_{2}}
\]
Dado que \( R_{2} = 4 \) ohmios y \( R \) debe ser al menos \( 2.5 \) ohmios, podemos sustituir \( R \) en la ecuación:
\[
\frac{1}{2.5} = \frac{1}{R_{1}} + \frac{1}{4}
\]
Ahora, resolvemos para \( R_{1} \):
\[
\frac{1}{R_{1}} = \frac{1}{2.5} - \frac{1}{4}
\]
Calculamos \( \frac{1}{2.5} \) y \( \frac{1}{4} \):
\[
\frac{1}{2.5} = 0.4 \quad \text{y} \quad \frac{1}{4} = 0.25
\]
Por lo tanto:
\[
\frac{1}{R_{1}} = 0.4 - 0.25 = 0.15
\]
Finalmente, invertimos para encontrar \( R_{1} \):
\[
R_{1} = \frac{1}{0.15} \approx 6.67 \text{ ohmios}
\]
### Problema 7: Conjuntos Solución
a) Para \( |4 + 7x| = 5 \):
\[
x_{1} = -\frac{9}{7}, \quad x_{2} = \frac{1}{7}
\]
b) Para \( |x - 8| = |5x - 16| \):
\[
x_{1} = 2, \quad x_{2} = 4
\]
c) Para \( \left|x + \frac{2}{3}\right| = |-2x + 3| \):
\[
x_{1} = \frac{7}{9}, \quad x_{2} = \frac{11}{3}
\]
d) Para \( 23 - |8x| = 7 - x^{2} \):
\[
x_{1} = -4, \quad x_{2} = 4
\]
e) Para \( |9 - x| \leq \sqrt{5} \):
\[
-\sqrt{5} + 9 \leq x \leq \sqrt{5} + 9
\]
f) Para \( 12 - |x + 5| < 0 \):
\[
x \in (-\infty, -17) \cup (7, +\infty)
\]
g) Para \( 49 - 7x^{2} \leq 0 \):
\[
x \in (-\infty, -\sqrt{7}] \cup [\sqrt{7}, +\infty)
\]
h) Para \( -1 + \left(x + \frac{5}{3}\right)^{2} \leq 2 \):
\[
-\frac{3\sqrt{3} + 5}{3} \leq x \leq \frac{3\sqrt{3} - 5}{3}
\]
i) Para \( \frac{x + 9}{|x - 5| x^{5} + 0} < 0 \):
\[
-9 < x < 0
\]
### Gráficas
Para graficar los conjuntos solución, se pueden representar en la recta real los intervalos y puntos encontrados. Si necesitas las gráficas específicas, por favor indícalo.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution