Question
upstudy study bank question image url

CALCULO I - CALCULO NIVELI 6- Cuando dos resistencias \( R_{1} \) y \( R_{2} \) están conectadas en paralelo, la resistencia total \( R \) satisface la ecuación \( \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \). Encuentre \( R_{1} \) para un circuito en paralelo en el que \( R_{2}=4[ \) ohm \( ] \) y \( R \) debe ser al menos de \( 2,5[ \) ohm \( ] \). 7- Encuentre y grafique en la recta real el conjunto solución de \( \begin{array}{lll}\text { a) }|4+7 x|=5 & \text { b) }|x-8|=\mid 5 x-16 & \text { e) }\left|x+\frac{2}{3}\right|=|-2 x+3| \\ \text { d) } 23-|8 x|=7-x^{2} & \text { e) }|9-x| \leq \sqrt{5} & \text { f) } 12-|x+5|<0 \\ \text { g) } 49-7 x^{2} \leq 0 & \text { h) }-1+\left(x+\frac{5}{3}\right)^{2} \leq 2 & \text { i) } \frac{x+9}{|x-5| x^{5}+0}<\end{array} \)

Ask by Sherman Joseph. in Argentina
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

### Problema 6: Resistencia en Paralelo Para dos resistencias \( R_{1} \) y \( R_{2} = 4 \) ohmios conectadas en paralelo, la resistencia total \( R \) es al menos \( 2.5 \) ohmios. Calculamos \( R_{1} \) como \( 6.67 \) ohmios. ### Problema 7: Conjuntos Solución a) \( |4 + 7x| = 5 \): \( x = -\frac{9}{7}, \frac{1}{7} \) b) \( |x - 8| = |5x - 16| \): \( x = 2, 4 \) c) \( \left|x + \frac{2}{3}\right| = |-2x + 3| \): \( x = \frac{7}{9}, \frac{11}{3} \) d) \( 23 - |8x| = 7 - x^{2} \): \( x = -4, 4 \) e) \( |9 - x| \leq \sqrt{5} \): \( -\sqrt{5} + 9 \leq x \leq \sqrt{5} + 9 \) f) \( 12 - |x + 5| < 0 \): \( x < -17 \) o \( x > 7 \) g) \( 49 - 7x^{2} \leq 0 \): \( x \leq -\sqrt{7} \) o \( x \geq \sqrt{7} \) h) \( -1 + \left(x + \frac{5}{3}\right)^{2} \leq 2 \): \( -\frac{3\sqrt{3} + 5}{3} \leq x \leq \frac{3\sqrt{3} - 5}{3} \) i) \( \frac{x + 9}{|x - 5| x^{5} + 0} < 0 \): \( -9 < x < 0 \) ### Gráficas Las gráficas de los conjuntos solución se representan en la recta real según los intervalos y puntos calculados.

Solution

Solve the inequality by following steps: - step0: Solve for \(x\): \(12-\left|x+5\right|<0\) - step1: Rearrange the terms: \(-\left|x+5\right|<-12\) - step2: Calculate: \(\left|x+5\right|>12\) - step3: Separate into possible cases: \(\begin{align}&x+5>12\\&x+5<-12\end{align}\) - step4: Solve the inequality: \(\begin{align}&x>7\\&x<-17\end{align}\) - step5: Find the union: \(x \in \left(-\infty,-17\right)\cup \left(7,+\infty\right)\) Solve the equation \( |9-x| \leq \sqrt{5} \). Solve the inequality by following steps: - step0: Solve for \(x\): \(\left|9-x\right|\leq \sqrt{5}\) - step1: Separate into possible cases: \(\left\{ \begin{array}{l}9-x\leq \sqrt{5}\\9-x\geq -\sqrt{5}\end{array}\right.\) - step2: Solve the inequality: \(\left\{ \begin{array}{l}x\geq -\sqrt{5}+9\\x\leq \sqrt{5}+9\end{array}\right.\) - step3: Find the intersection: \(-\sqrt{5}+9\leq x\leq \sqrt{5}+9\) Solve the equation \( |4+7x|=5 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\left|4+7x\right|=5\) - step1: Separate into possible cases: \(\begin{align}&4+7x=5\\&4+7x=-5\end{align}\) - step2: Solve the equation: \(\begin{align}&x=\frac{1}{7}\\&x=-\frac{9}{7}\end{align}\) - step3: Rewrite: \(x_{1}=-\frac{9}{7},x_{2}=\frac{1}{7}\) Solve the equation \( 49-7x^{2} \leq 0 \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(49-7x^{2}\leq 0\) - step1: Rewrite the expression: \(49-7x^{2}=0\) - step2: Move the constant to the right side: \(-7x^{2}=0-49\) - step3: Remove 0: \(-7x^{2}=-49\) - step4: Change the signs: \(7x^{2}=49\) - step5: Divide both sides: \(\frac{7x^{2}}{7}=\frac{49}{7}\) - step6: Divide the numbers: \(x^{2}=7\) - step7: Simplify the expression: \(x=\pm \sqrt{7}\) - step8: Separate into possible cases: \(\begin{align}&x=\sqrt{7}\\&x=-\sqrt{7}\end{align}\) - step9: Determine the test intervals: \(\begin{align}&x<-\sqrt{7}\\&-\sqrt{7}\sqrt{7}\end{align}\) - step10: Choose a value: \(\begin{align}&x_{1}=-4\\&x_{2}=0\\&x_{3}=4\end{align}\) - step11: Test the chosen value: \(\begin{align}&x<-\sqrt{7}\textrm{ }\textrm{is the solution}\\&-\sqrt{7}\sqrt{7}\textrm{ }\textrm{is the solution}\end{align}\) - step12: Include the critical value: \(\begin{align}&x\leq -\sqrt{7}\textrm{ }\textrm{is the solution}\\&x\geq \sqrt{7}\textrm{ }\textrm{is the solution}\end{align}\) - step13: The final solution is \(x \in \left(-\infty,-\sqrt{7}\right]\cup \left[\sqrt{7},+\infty\right):\) \(x \in \left(-\infty,-\sqrt{7}\right]\cup \left[\sqrt{7},+\infty\right)\) Solve the equation \( |x-8|=|5x-16| \). Solve the equation by following steps: - step0: Solve for \(x\): \(\left|x-8\right|=\left|5x-16\right|\) - step1: Evaluate: \(\begin{align}&x-8=5x-16\\&x-8=-\left(5x-16\right)\end{align}\) - step2: Calculate: \(\begin{align}&x=2\\&x=4\end{align}\) - step3: Rewrite: \(x_{1}=2,x_{2}=4\) Solve the equation \( 23-|8x|=7-x^{2} \). Solve the equation by following steps: - step0: Solve for \(x\): \(23-\left|8x\right|=7-x^{2}\) - step1: Move the expression to the left side: \(23-\left|8x\right|-\left(7-x^{2}\right)=0\) - step2: Subtract the terms: \(16-\left|8x\right|+x^{2}=0\) - step3: Separate into possible cases: \(\begin{align}&16-8x+x^{2}=0,8x\geq 0\\&16-\left(-8x\right)+x^{2}=0,8x<0\end{align}\) - step4: Solve the equation: \(\begin{align}&x=4,x\geq 0\\&x=-4,x<0\end{align}\) - step5: Find the intersection: \(\begin{align}&x=4\\&x=-4\end{align}\) - step6: Rewrite: \(x_{1}=-4,x_{2}=4\) Solve the equation \( \left|x+\frac{2}{3}\right|=|-2x+3| \). Solve the equation by following steps: - step0: Solve for \(x\): \(\left|x+\frac{2}{3}\right|=\left|-2x+3\right|\) - step1: Rewrite the expression: \(\left|x+\frac{2}{3}\right|=\left|2x-3\right|\) - step2: Evaluate: \(\begin{align}&x+\frac{2}{3}=2x-3\\&x+\frac{2}{3}=-\left(2x-3\right)\end{align}\) - step3: Calculate: \(\begin{align}&x=\frac{11}{3}\\&x=\frac{7}{9}\end{align}\) - step4: Rewrite: \(x_{1}=\frac{7}{9},x_{2}=\frac{11}{3}\) Solve the equation \( \frac{x+9}{|x-5| x^{5}+0}<0 \). Solve the inequality by following steps: - step0: Solve the inequality by separating into cases: \(\frac{x+9}{\left|x-5\right|\times x^{5}+0}<0\) - step1: Find the domain: \(\frac{x+9}{\left|x-5\right|\times x^{5}+0}<0,x \in \left(-\infty,0\right)\cup \left(0,5\right)\cup \left(5,+\infty\right)\) - step2: Simplify: \(\frac{x+9}{x^{5}\left|x-5\right|}<0\) - step3: Separate into possible cases: \(\begin{align}&\left\{ \begin{array}{l}x+9>0\\x^{5}\left|x-5\right|<0\end{array}\right.\\&\left\{ \begin{array}{l}x+9<0\\x^{5}\left|x-5\right|>0\end{array}\right.\end{align}\) - step4: Solve the inequality: \(\begin{align}&\left\{ \begin{array}{l}x>-9\\x<0\end{array}\right.\\&\left\{ \begin{array}{l}x<-9\\x \in \left(0,5\right)\cup \left(5,+\infty\right)\end{array}\right.\end{align}\) - step5: Find the intersection: \(\begin{align}&-9\frac{3\sqrt{3}-5}{3}\end{align}\) - step11: Choose a value: \(\begin{align}&x_{1}=-4\\&x_{2}=-2\\&x_{3}=1\end{align}\) - step12: Test the chosen value: \(\begin{align}&x<-\frac{3\sqrt{3}+5}{3}\textrm{ }\textrm{is not a solution}\\&-\frac{3\sqrt{3}+5}{3}\frac{3\sqrt{3}-5}{3}\textrm{ }\textrm{is not a solution}\end{align}\) - step13: Include the critical value: \(\begin{align}&-\frac{3\sqrt{3}+5}{3}\leq x\leq \frac{3\sqrt{3}-5}{3}\textrm{ }\textrm{is the solution}\end{align}\) - step14: The final solution is \(-\frac{3\sqrt{3}+5}{3}\leq x\leq \frac{3\sqrt{3}-5}{3}:\) \(-\frac{3\sqrt{3}+5}{3}\leq x\leq \frac{3\sqrt{3}-5}{3}\) ### Problema 6: Resistencia en Paralelo La ecuación que relaciona las resistencias en paralelo es: \[ \frac{1}{R} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \] Dado que \( R_{2} = 4 \) ohmios y \( R \) debe ser al menos \( 2.5 \) ohmios, podemos sustituir \( R \) en la ecuación: \[ \frac{1}{2.5} = \frac{1}{R_{1}} + \frac{1}{4} \] Ahora, resolvemos para \( R_{1} \): \[ \frac{1}{R_{1}} = \frac{1}{2.5} - \frac{1}{4} \] Calculamos \( \frac{1}{2.5} \) y \( \frac{1}{4} \): \[ \frac{1}{2.5} = 0.4 \quad \text{y} \quad \frac{1}{4} = 0.25 \] Por lo tanto: \[ \frac{1}{R_{1}} = 0.4 - 0.25 = 0.15 \] Finalmente, invertimos para encontrar \( R_{1} \): \[ R_{1} = \frac{1}{0.15} \approx 6.67 \text{ ohmios} \] ### Problema 7: Conjuntos Solución a) Para \( |4 + 7x| = 5 \): \[ x_{1} = -\frac{9}{7}, \quad x_{2} = \frac{1}{7} \] b) Para \( |x - 8| = |5x - 16| \): \[ x_{1} = 2, \quad x_{2} = 4 \] c) Para \( \left|x + \frac{2}{3}\right| = |-2x + 3| \): \[ x_{1} = \frac{7}{9}, \quad x_{2} = \frac{11}{3} \] d) Para \( 23 - |8x| = 7 - x^{2} \): \[ x_{1} = -4, \quad x_{2} = 4 \] e) Para \( |9 - x| \leq \sqrt{5} \): \[ -\sqrt{5} + 9 \leq x \leq \sqrt{5} + 9 \] f) Para \( 12 - |x + 5| < 0 \): \[ x \in (-\infty, -17) \cup (7, +\infty) \] g) Para \( 49 - 7x^{2} \leq 0 \): \[ x \in (-\infty, -\sqrt{7}] \cup [\sqrt{7}, +\infty) \] h) Para \( -1 + \left(x + \frac{5}{3}\right)^{2} \leq 2 \): \[ -\frac{3\sqrt{3} + 5}{3} \leq x \leq \frac{3\sqrt{3} - 5}{3} \] i) Para \( \frac{x + 9}{|x - 5| x^{5} + 0} < 0 \): \[ -9 < x < 0 \] ### Gráficas Para graficar los conjuntos solución, se pueden representar en la recta real los intervalos y puntos encontrados. Si necesitas las gráficas específicas, por favor indícalo.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Para resolver la primera parte, empezamos con la ecuación de resistencias en paralelo. Sabemos que \( R \) debe ser al menos \( 2.5 \) ohm, y \( R_{2} = 4 \) ohm. Por tanto, utilizando la fórmula: \[ \frac{1}{R} = \frac{1}{R_{1}} + \frac{1}{4} \] Sustituyendo \( R \): \[ \frac{1}{2.5} = \frac{1}{R_{1}} + \frac{1}{4} \] Al resolver esta ecuación, encontramos el valor mínimo de \( R_{1} \). --- Para el segundo conjunto de problemas, debemos resolver cada una de las ecuaciones y desigualdades. Vamos a tomar, por ejemplo, la primera ecuación \( |4 + 7x| = 5 \). Esta se divide en dos casos: 1. \( 4 + 7x = 5 \) 2. \( 4 + 7x = -5 \) Al resolver estas ecuaciones, encontrarás los valores de \( x \). Luego, puedes graficar estos puntos en la recta real. Repite el mismo proceso para las siguientes ecuaciones y desigualdades, teniendo siempre presente el significado de los valores absolutos y cómo afectan la solución. ¡Suerte!

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy