Question
upstudy study bank question image url

a) \( y=-2 x^{2}+x+3 \)

Ask by Dunn Bryant. in Argentina
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La función \( y = -2x^{2} + x + 3 \) es una parábola que abre hacia abajo con vértice en \( \left(\frac{1}{4}, \frac{25}{8}\right) \). Interseca el eje Y en \( (0, 3) \) y el eje X en \( (-1, 0) \) y \( \left(\frac{3}{2}, 0\right) \).

Solution

Claro, analicemos la función cuadrática dada: ### a) \( y = -2x^{2} + x + 3 \) #### 1. **Forma estándar:** La función está en la forma estándar de una cuadrática: \[ y = ax^{2} + bx + c \] Donde: - \( a = -2 \) - \( b = 1 \) - \( c = 3 \) #### 2. **Vértice:** El vértice de una parábola dada por \( y = ax^{2} + bx + c \) se encuentra en: \[ x_v = -\frac{b}{2a} \] \[ y_v = f(x_v) \] Calculamos \( x_v \): \[ x_v = -\frac{1}{2(-2)} = \frac{1}{4} \] Ahora, sustituimos \( x_v \) en la función para hallar \( y_v \): \[ y_v = -2\left(\frac{1}{4}\right)^{2} + \frac{1}{4} + 3 \] \[ y_v = -2\left(\frac{1}{16}\right) + \frac{1}{4} + 3 \] \[ y_v = -\frac{1}{8} + \frac{1}{4} + 3 \] \[ y_v = \frac{-1 + 2 + 24}{8} = \frac{25}{8} \] Por lo tanto, el vértice es \( \left(\frac{1}{4}, \frac{25}{8}\right) \). #### 3. **Dirección de la parábola:** Dado que \( a = -2 \) es negativo, la parábola abre hacia **abajo**. #### 4. **Intersección con el eje Y:** La intersección con el eje Y se encuentra evaluando \( x = 0 \): \[ y = -2(0)^{2} + 0 + 3 = 3 \] Entonces, la intersección con el eje Y es en el punto \( (0, 3) \). #### 5. **Intersecciones con el eje X (raíces):** Para encontrar las raíces, resolvemos \( y = 0 \): \[ -2x^{2} + x + 3 = 0 \] Aplicamos la fórmula cuadrática: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] \[ x = \frac{-1 \pm \sqrt{1 - 4(-2)(3)}}{2(-2)} \] \[ x = \frac{-1 \pm \sqrt{1 + 24}}{-4} \] \[ x = \frac{-1 \pm \sqrt{25}}{-4} \] \[ x = \frac{-1 \pm 5}{-4} \] Entonces, \[ x_1 = \frac{-1 + 5}{-4} = \frac{4}{-4} = -1 \] \[ x_2 = \frac{-1 - 5}{-4} = \frac{-6}{-4} = \frac{3}{2} \] Las intersecciones con el eje X son en \( (-1, 0) \) y \( \left(\frac{3}{2}, 0\right) \). #### 6. **Resumen:** - **Vértice:** \( \left(\frac{1}{4}, \frac{25}{8}\right) \) - **Dirección:** Abre hacia abajo - **Intersección con el eje Y:** \( (0, 3) \) - **Intersecciones con el eje X:** \( (-1, 0) \) y \( \left(\frac{3}{2}, 0\right) \) Si necesitas un análisis adicional o tienes otra parte del problema, no dudes en indicarlo.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

This equation represents a downward-opening parabola, which means the highest point is its vertex. The vertex can be found using the formula \( x = -\frac{b}{2a} \). In this case, \( a = -2 \) and \( b = 1 \), which means the vertex's x-coordinate is at \( x = \frac{1}{4} \). By substituting back into the equation, you can find the corresponding y-coordinate, giving you the peak of this charming curve! For real-world applications, parabolas like this one can model projectile motion. So, if you toss a ball, its path follows a parabolic shape, peaking at the vertex before coming back down, just like the equation you have here. Understanding the properties of such equations can help in fields like engineering, physics, and even economics!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy