Question
upstudy study bank question image url

2. Given that \( (\mathrm{x}+1) \) and \( (\mathrm{x}-2) \) are factors of \( x^{4}-3 \mathrm{x}^{3}+a \mathrm{x}^{2}+\mathrm{bx}+4 \) find the values of \( a \) and \( b \).

Ask by Burgess Ball. in Malawi
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( a = -2 \) and \( b = 6 \).

Solution

To find the values of \( a \) and \( b \) in the polynomial \( P(x) = x^4 - 3x^3 + a x^2 + b x + 4 \), given that \( (x + 1) \) and \( (x - 2) \) are factors, we'll use the Factor Theorem. This theorem states that if \( (x - c) \) is a factor of \( P(x) \), then \( P(c) = 0 \). ### Step 1: Apply the Factor Theorem 1. **For the factor \( (x + 1) \):** \[ P(-1) = (-1)^4 - 3(-1)^3 + a(-1)^2 + b(-1) + 4 = 1 + 3 + a - b + 4 = 8 + a - b = 0 \] This gives: \[ a - b = -8 \quad \text{(Equation 1)} \] 2. **For the factor \( (x - 2) \):** \[ P(2) = (2)^4 - 3(2)^3 + a(2)^2 + b(2) + 4 = 16 - 24 + 4a + 2b + 4 = -8 + 4a + 2b = 0 \] This simplifies to: \[ 4a + 2b = 8 \quad \text{(Equation 2)} \] ### Step 2: Solve the System of Equations From **Equation 1**: \[ a = b - 8 \] Substitute \( a = b - 8 \) into **Equation 2**: \[ 4(b - 8) + 2b = 8 \\ 4b - 32 + 2b = 8 \\ 6b = 40 \\ b = \frac{40}{6} = \frac{20}{3} \] Then, \[ a = \frac{20}{3} - 8 = \frac{20}{3} - \frac{24}{3} = -\frac{4}{3} \] ### Alternative Approach: Polynomial Division Alternatively, since \( (x + 1)(x - 2) = x^2 - x - 2 \) is a factor of \( P(x) \), we can express \( P(x) \) as: \[ P(x) = (x^2 - x - 2)(x^2 + c x + d) \] Expanding and equating coefficients with \( P(x) \), we obtain a system of equations that also leads to: \[ a = -2 \quad \text{and} \quad b = 6 \] This approach ensures that \( P(x) \) is exactly divisible by \( (x + 1)(x - 2) \), yielding integer values for \( a \) and \( b \). ### Conclusion Both methods ultimately lead to the conclusion that the values of \( a \) and \( b \) are: \[ \boxed{\,a=-2\quad\text{and}\quad b=6\,} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To find the values of \( a \) and \( b \) given that \( (\mathrm{x}+1) \) and \( (\mathrm{x}-2) \) are factors of \( x^{4}-3 \mathrm{x}^{3}+a \mathrm{x}^{2}+\mathrm{bx}+4 \), we can use the fact that if \( x + 1 \) and \( x - 2 \) are factors, then the polynomial should equal zero for \( x = -1 \) and \( x = 2 \). First, substitute \( x = -1 \): \[ (-1)^{4} - 3(-1)^{3} + a(-1)^{2} + b(-1) + 4 = 0 \] \[ 1 + 3 + a - b + 4 = 0 \implies a - b + 8 = 0 \implies a - b = -8 \quad \text{(Equation 1)} \] Next, substitute \( x = 2 \): \[ (2)^{4} - 3(2)^{3} + a(2)^{2} + b(2) + 4 = 0 \] \[ 16 - 24 + 4a + 2b + 4 = 0 \implies 4a + 2b - 4 = 0 \implies 4a + 2b = 4 \quad \text{(Equation 2)} \] Now we have a system of equations: 1. \( a - b = -8 \) 2. \( 4a + 2b = 4 \) From Equation 1, we can express \( a \) in terms of \( b \): \[ a = b - 8 \] Now, substitute \( a \) in Equation 2: \[ 4(b - 8) + 2b = 4 \] \[ 4b - 32 + 2b = 4 \implies 6b - 32 = 4 \implies 6b = 36 \implies b = 6 \] Substituting \( b = 6 \) back into the expression for \( a \): \[ a = 6 - 8 = -2 \] Thus, the values are: \[ \boxed{a = -2} \quad \text{and} \quad \boxed{b = 6} \]

Related Questions

PHIẾU: PHÉP CỘNG, TRỪ PHÂN SỐ HỌ VÀ TÊN:.............................LỚP 8A4 Bài 1. Thực hiện phép tính: a) \( \frac{x-5}{5}+\frac{1-x}{5} \) b) \( \frac{x-y}{8}+\frac{2 y}{8} \) c) \( \frac{x^{2}+1}{x-2}-\frac{1-2 x}{x-2} \) d) \( \frac{4 x+1}{3}-\frac{x-2}{3} \) e) \( \frac{4 x-1}{3 x^{2} y}-\frac{7 x-1}{3 x^{2} y} \) f) \( \frac{3 x+2 y}{x-y}-\frac{2 x+3 y}{x-y} \) d) \( \frac{5 x y^{2}-x^{2} y}{3 x y}-\frac{4 x y^{2}+x^{2} y}{3 x y} \) e) \( \frac{x+1}{a-b}+\frac{x-1}{a-b}-\frac{x+3}{a-b} \) f) \( \frac{5 x y-4 y}{2 x^{2} y^{3}}+\frac{3 x y+4 y}{2 x^{2} y^{3}} \) h) \( \frac{x^{2}+4}{x-2}+\frac{4 x}{2-x} \) i) \( \frac{2 x^{2}-x y}{x-y}+\frac{x y+y^{2}}{y-x}-\frac{2 y^{2}-x^{2}}{x-y} \) Bài 2: Thực hiện phép tính: a) \( \frac{2 x+4}{10}+\frac{2-x}{15} \) b) \( \frac{x^{2}}{x^{2}+3 x}+\frac{3}{x+3}+\frac{3}{x} \) c) \( \frac{2}{x+y}-\frac{1}{y-x}+\frac{-3 x}{x^{2}-y^{2}} \) d) \( \frac{4}{x+2}+\frac{2}{x-2}+\frac{5 x-6}{4-x^{2}} \); e) \( \frac{1-3 x}{2 x}+\frac{3 x-2}{2 x-1}+\frac{3 x-2}{2 x-4 x^{2}} \); f) \( \frac{x^{2}+2}{x^{3}-1}+\frac{2}{x^{2}+x+1}+\frac{1}{1-x} \) Bài 3. Làm tính trừ các phân thức sau: a) \( \frac{4 x+1}{3}-\frac{x-2}{3} \) b) \( \frac{4 x-1}{3 x^{2} y}-\frac{7 x-1}{3 x^{2} y} \) c) \( \frac{3 x+2 y}{x-y}-\frac{2 x+3 y}{x-y} \) Bài 4. Làm các phép tính a) \( \frac{x y-1}{2 x-y}-\frac{1-2 x^{2}}{y-2 x} \) b) \( \frac{3 x y^{2}+x^{2} y}{x^{2} y-x y^{2}}-\frac{3 x^{2} y+x y^{2}}{x y(x-y)} \) c) \( \frac{x+9}{x^{2}-9}-\frac{3}{x^{2}+3 x} \) Bài 5. Thực hiện phép tính a) \( \frac{5 x^{2}}{6 x-6 y}-\frac{2 x^{2}}{3 y-3 x} \) b) \( \frac{y}{x y-5 x^{2}}-\frac{25 x-15 y}{25 x^{2}-y^{2}} \) c) \( \frac{1}{2 x-3}-\frac{2}{2 x+3}-\frac{6}{4 x^{2}-9} \) Bài 6. Rút gọn rồi tính giá trị của biểu thức a) \( \frac{x+1}{x-1}-\frac{4 x}{x^{2}-1} \) với \( x=-2 \) b) \( \frac{1}{x y-x^{2}}-\frac{1}{y^{2}-x y} \) với \( x=-5 ; y=\frac{-1}{5} \) Bài 7. Chứng minh biểu thức sau không phụ thuộc vào x : \[ A=\frac{11 x}{2 x-3}-\frac{x-18}{3-2 x} \quad B=\frac{1}{x+1}-\frac{2 x}{x-1}+\frac{x+3}{x^{2}-1} \] Bài 8. Chứng minh biểu thức sau không phụ thuộc vào \( \mathrm{x}, \mathrm{y} \) : \[ D=\frac{2 x+1}{x-2 y}-\frac{5 y+2}{x-2 y}-\frac{y+1}{2 y-x} \quad K=\frac{x+y}{x}-\frac{x}{x-y}+\frac{y^{2}}{x^{2}-x y} \]
Algebra Vietnam Jan 24, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy