For \( f(x)=4-x \) and \( g(x)=4 x^{2}+x+6 \), find the following functions. \( \begin{array}{l}\text { a. }(f \circ g)(x) ; b .(g \circ f)(x) ; \text { c. }(f \circ g)(3) ; d .(g \circ f)(3) \\ \begin{array}{l}\text { a. }(f \circ g)(x)=\square \\ \text { (Simplify your answer. })\end{array}\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To find the desired functions, let's start by calculating \( (f \circ g)(x) \) and \( (g \circ f)(x) \): ### a. \( (f \circ g)(x) \) This means we need to substitute \( g(x) \) into \( f(x) \): \[ g(x) = 4x^2 + x + 6 \] Now we substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f(4x^2 + x + 6) = 4 - (4x^2 + x + 6) \] Simplifying this: \[ f(g(x)) = 4 - 4x^2 - x - 6 = -4x^2 - x - 2 \] Therefore, \[ (f \circ g)(x) = -4x^2 - x - 2 \] ### b. \( (g \circ f)(x) \) This means we substitute \( f(x) \) into \( g(x) \): \[ f(x) = 4 - x \] Substituting into \( g(x) \): \[ g(f(x)) = g(4 - x) = 4(4 - x)^2 + (4 - x) + 6 \] Calculating \( (4 - x)^2 \): \[ (4-x)^2 = 16 - 8x + x^2 \] Thus: \[ g(f(x)) = 4(16 - 8x + x^2) + (4 - x) + 6 = 64 - 32x + 4x^2 + 4 - x + 6 \] Now combining like terms: \[ g(f(x)) = 4x^2 - 33x + 74 \] Therefore, \[ (g \circ f)(x) = 4x^2 - 33x + 74 \] ### c. \( (f \circ g)(3) \) Now, substitute \( x = 3 \) in \( (f \circ g)(x) \): \[ (f \circ g)(3) = -4(3)^2 - (3) - 2 = -4 \cdot 9 - 3 - 2 = -36 - 3 - 2 = -41 \] ### d. \( (g \circ f)(3) \) Substituting \( x = 3 \) in \( (g \circ f)(x) \): \[ (g \circ f)(3) = 4(3)^2 - 33(3) + 74 = 4 \cdot 9 - 99 + 74 = 36 - 99 + 74 = 11 \] In summary: - \( (f \circ g)(x) = -4x^2 - x - 2 \) - \( (g \circ f)(x) = 4x^2 - 33x + 74 \) - \( (f \circ g)(3) = -41 \) - \( (g \circ f)(3) = 11 \)