Question
upstudy study bank question image url

Multiple Choice Identify the choice that best completes the statement or answers the question. - 1. \( \frac{-5}{x-1}=\frac{3}{x-3} \) a. \( \frac{18}{5} \) b. \( \frac{3}{8} \) c. \( \frac{9}{4} \) d. 0 2. \( \frac{-5}{x-3}=\frac{-3}{x+3} \) a. -12 b. -3 c. \( -\frac{9}{2} \) d. \( -\frac{24}{5} \) 3. \( \frac{a}{a^{2}-36}+\frac{2}{a-6}=\frac{1}{a+6} \) a. \( \quad-9 \) b. -9 and -6 c. 6 d. -6 4. \( \frac{6}{x^{2}-9}-\frac{1}{x-3}=1 \) a. \( \quad-4 \) b. 3 or -4 c. \( \frac{-1 \pm \sqrt{73}}{2} \) d. 2 5. \( \frac{5}{6 d}+\frac{5}{d}=2 \) a. \( \frac{35}{12} \) b. \( \frac{5}{7} \) c. \( \frac{7}{2} \) d. \( \frac{35}{6} \) 6. \( \frac{8}{5 d}+\frac{3}{5 d}=6 \) a. \( \frac{11}{48} \) b. \( \frac{11}{30} \) c. \( \frac{11}{5} \) d. \( \frac{11}{60} \) 7. The sum of the reciprocals of two consecutive even integers is \( \frac{11}{60} \). Write an equation that can be used to find the two integers. Find the two integers. a. \( \frac{1}{k}+\frac{1}{k+2}=\frac{11}{60} ; 8 \) and 10 c. \( \quad k+(k+2)=\frac{11}{60} ; 8 \) and 10 b. \( \frac{1}{k}+\frac{1}{k+2}=\frac{11}{60} ; 10 \) and 12 d. \( \quad k+(k+2)=\frac{11}{60} ; 10 \) and 12

Ask by Watson Howell. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( \frac{-5}{x-1} = \frac{3}{x-3} \) **Answer:** c. \( \frac{9}{4} \) 2. \( \frac{-5}{x-3} = \frac{-3}{x+3} \) **Answer:** a. \(-12\) 3. \( \frac{a}{a^{2}-36} + \frac{2}{a-6} = \frac{1}{a+6} \) **Answer:** a. \(-9\) 4. \( \frac{6}{x^{2}-9} - \frac{1}{x-3} = 1 \) **Answer:** a. \(-4\) 5. \( \frac{5}{6d} + \frac{5}{d} = 2 \) **Answer:** a. \( \frac{35}{12} \) 6. \( \frac{8}{5d} + \frac{3}{5d} = 6 \) **Answer:** b. \( \frac{11}{30} \) 7. The sum of the reciprocals of two consecutive even integers is \( \frac{11}{60} \). **Answer:** b. \( \frac{1}{k} + \frac{1}{k+2} = \frac{11}{60}; \; 10 \) and \( 12 \)

Solution

Let's solve each of the multiple-choice questions step by step. --- **1. Solve \( \frac{-5}{x-1} = \frac{3}{x-3} \)** **Solution:** \[ -5(x - 3) = 3(x - 1) \\ -5x + 15 = 3x - 3 \\ -8x = -18 \\ x = \frac{18}{8} = \frac{9}{4} \] **Answer:** **c. \( \frac{9}{4} \)** --- **2. Solve \( \frac{-5}{x-3} = \frac{-3}{x+3} \)** **Solution:** \[ -5(x + 3) = -3(x - 3) \\ -5x - 15 = -3x + 9 \\ -2x = 24 \\ x = -12 \] **Answer:** **a. \(-12\)** --- **3. Solve \( \frac{a}{a^{2}-36} + \frac{2}{a-6} = \frac{1}{a+6} \)** **Solution:** \[ \frac{a}{(a-6)(a+6)} + \frac{2}{a-6} = \frac{1}{a+6} \\ \text{Multiply by } (a-6)(a+6): \\ a + 2(a + 6) = a - 6 \\ 3a + 12 = a - 6 \\ 2a = -18 \\ a = -9 \] (Note: \( a = -6 \) would make the denominator zero, so it's excluded.) **Answer:** **a. \(-9\)** --- **4. Solve \( \frac{6}{x^{2}-9} - \frac{1}{x-3} = 1 \)** **Solution:** \[ \frac{6}{(x-3)(x+3)} - \frac{1}{x-3} = 1 \\ \text{Multiply by } (x-3)(x+3): \\ 6 - (x + 3) = x^2 - 9 \\ 3 - x = x^2 - 9 \\ x^2 + x - 12 = 0 \\ x = \frac{-1 \pm \sqrt{1 + 48}}{2} = \frac{-1 \pm 7}{2} \\ x = 3 \text{ (invalid, causes division by zero)} \text{ or } x = -4 \] **Answer:** **a. \(-4\)** --- **5. Solve \( \frac{5}{6d} + \frac{5}{d} = 2 \)** **Solution:** \[ \frac{5}{6d} + \frac{5}{d} = \frac{5 + 30}{6d} = \frac{35}{6d} = 2 \\ 35 = 12d \\ d = \frac{35}{12} \] **Answer:** **a. \( \frac{35}{12} \)** --- **6. Solve \( \frac{8}{5d} + \frac{3}{5d} = 6 \)** **Solution:** \[ \frac{11}{5d} = 6 \\ 5d = \frac{11}{6} \\ d = \frac{11}{30} \] **Answer:** **b. \( \frac{11}{30} \)** --- **7. The sum of the reciprocals of two consecutive even integers is \( \frac{11}{60} \). Find the two integers.** **Solution:** Let the integers be \( k \) and \( k + 2 \). \[ \frac{1}{k} + \frac{1}{k+2} = \frac{11}{60} \] Testing the options: - **Option a:** \( k = 8 \) and \( k+2 = 10 \) \[ \frac{1}{8} + \frac{1}{10} = \frac{5}{40} + \frac{4}{40} = \frac{9}{40} \neq \frac{11}{60} \] - **Option b:** \( k = 10 \) and \( k+2 = 12 \) \[ \frac{1}{10} + \frac{1}{12} = \frac{6}{60} + \frac{5}{60} = \frac{11}{60} \] **Answer:** **b. \( \frac{1}{k} + \frac{1}{k+2} = \frac{11}{60}; \; 10 \) and \( 12 \)** ---

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To solve the equation \( \frac{-5}{x-1}=\frac{3}{x-3} \), cross-multiply: \(-5(x-3) = 3(x-1)\). Distributing gives \(-5x + 15 = 3x - 3\). Combining like terms leads to \( 8x = 18\), giving \(x = \frac{9}{4}\), so the answer is (c). Next up, for \( \frac{5}{6 d}+\frac{5}{d}=2 \), first, find a common denominator \(6d\): \(\frac{5}{6d} + \frac{30}{6d} = 2\), leading to \(\frac{35}{6d} = 2\). Cross multiply to find \(35 = 12d\), hence \(d = \frac{35}{12}\), making option (a) the correct choice!

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy