Question
upstudy study bank question image url

\( f(x)=\frac{c 2 x^{x}}{x!} \quad x=0,1, \ldots \) Find constant \( C \)

Ask by Chadwick Byrd. in Iraq
Jan 08,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

للحساب الصحيح للثابت \( C \) في الدالة \( f(x) = \frac{C \cdot 2 \cdot x^{x}}{x!} \), يجب أن يكون مجموع قيم الدالة لجميع القيم الصحيحة لـ \( x \) يساوي 1. لذا، نحسب الثابت \( C \) كالتالي: \[ C = \frac{1}{2 \cdot \sum_{x=0}^{\infty} \frac{x^{x}}{x!}} \] هذا يعني أن قيمة \( C \) تعتمد على مجموع السلسلة \( \sum_{x=0}^{\infty} \frac{x^{x}}{x!} \).

Solution

لحساب الثابت \( C \) بحيث تكون الدالة \( f(x) = \frac{C \cdot 2 \cdot x^{x}}{x!} \) دالة توزيع احتمالي صحيحة، يجب أن يتحقق أن مجموع قيم \( f(x) \) لجميع \( x = 0, 1, 2, \ldots \) يساوي 1. أي: \[ \sum_{x=0}^{\infty} f(x) = 1 \] بالتعويض في المعادلة: \[ \sum_{x=0}^{\infty} \frac{C \cdot 2 \cdot x^{x}}{x!} = 1 \] يمكننا فصل الثابت \( C \cdot 2 \) خارج المجاميع: \[ C \cdot 2 \cdot \sum_{x=0}^{\infty} \frac{x^{x}}{x!} = 1 \] لحساب \( C \)، نقسم الطرفين على \( 2 \cdot \sum_{x=0}^{\infty} \frac{x^{x}}{x!} \): \[ C = \frac{1}{2 \cdot \sum_{x=0}^{\infty} \frac{x^{x}}{x!}} \] بالتالي، الثابت \( C \) يُعطى بالعلاقة التالية: \[ C = \frac{1}{2 \cdot \sum_{x=0}^{\infty} \frac{x^{x}}{x!}} \] **ملاحظة:** مجموع السلسلة \( \sum_{x=0}^{\infty} \frac{x^{x}}{x!} \) قد لا يكون له تعبير تحليلي بسيط، وقد يحتاج إلى حساب تقريبي باستخدام تقنيات التحليل العددي إذا كانت القيمة العددية مطلوبة.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the constant \( C \) in the given function \( f(x) = \frac{C 2 x^{x}}{x!} \) where \( x = 0, 1, \ldots \), we need the sum of \( f(x) \) over all possible values of \( x \) to equal 1. This means we have to normalize the function: \[ \sum_{x=0}^{\infty} f(x) = \sum_{x=0}^{\infty} \frac{C 2 x^{x}}{x!} = 1 \] Next, we evaluate the infinite sum: \[ \sum_{x=0}^{\infty} \frac{2 x^{x}}{x!} \] This expression can be connected to the series expansion of \( e^x \) and may involve the use of combinatorial methods or generating functions. However, for simplicity, we assume that the summation converges to a specific value, \( S \). Thus, we have: \[ C \cdot S = 1 \] From this, we can solve for \( C \): \[ C = \frac{1}{S} \] Finding the exact value of \( S \) may require advanced techniques or approximations. Assuming we calculate \( S \) appropriately, we can plug it back to find the constant \( C \). Hence, identifying \( C \) might require additional computations based on converging series, which can be intricate!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy