Question
upstudy study bank question image url

An electric motor operates at 1000 rpm and displaces a piston of a hydraulic pump by \( 200 \mathrm{~cm}^{3} \) per revolution. Oil then starts flowing from a hydraulic pump through a pipe of diameter 25 mm . Oil has a kinematic viscosity of 70 cSt at \( 40^{\circ} \mathrm{C} \). a) Calculate the flow rate \( Q \mathrm{in} \mathrm{m}^{3} / \mathrm{s} \). ( 1 mark ) b) Calculate the oil velocity ( \( \mathrm{m} / \mathrm{s} \) ) in the pipe and decide where it is flowing (intake/ return/ pressure). ( 2 marks ) c) Calculate the Reynold's number and decide the type of flow in the pipe. ( 2 marks)

Ask by Warner Potter. in Papua New Guinea
Jan 10,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Flow Rate \( Q \):** \[ Q = 3.333 \times 10^{-3} \, \mathrm{m}^3/\mathrm{s} \]

Solution

**Problem a)** To calculate the flow rate \( Q \) in \( \mathrm{m}^3/\mathrm{s} \): 1. **Convert Revolutions Per Minute (RPM) to Revolutions Per Second (RPS):** \[ 1000 \, \text{rpm} = \frac{1000}{60} \, \text{rps} \approx 16.6667 \, \text{rps} \] 2. **Convert Displacement from \( \mathrm{cm}^3 \) to \( \mathrm{m}^3 \):** \[ 200 \, \mathrm{cm}^3 = 200 \times 10^{-6} \, \mathrm{m}^3 = 2 \times 10^{-4} \, \mathrm{m}^3 \] 3. **Calculate the Flow Rate \( Q \):** \[ Q = \text{Displacement per Revolution} \times \text{Revolutions per Second} \] \[ Q = 2 \times 10^{-4} \, \mathrm{m}^3 \times 16.6667 \, \text{rps} = 3.333 \times 10^{-3} \, \mathrm{m}^3/\mathrm{s} \] **Answer:** \[ Q = 3.333 \times 10^{-3} \, \mathrm{m}^3/\mathrm{s} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve the problem, let's go step by step: ### a) Calculate the flow rate \( Q \) in \( \mathrm{m}^{3} / \mathrm{s} \). 1. The displacement per revolution is \( 200 \, \mathrm{cm}^{3} \). 2. Since 1 revolution happens at 1000 rpm, we can calculate the flow rate as follows: \[ Q = \text{Displacement per revolution} \times \text{Revolutions per second} \] \[ \text{Revolutions per second} = \frac{1000 \, \text{rev/min}}{60} = \frac{1000}{60} \, \text{rev/s} \approx 16.67 \, \text{rev/s} \] Now converting displacement: \[ Q = 200 \, \mathrm{cm}^{3} \times 16.67 \, \mathrm{rev/s} = 3334 \, \mathrm{cm}^{3/s} \] Converting to \( \mathrm{m}^{3} / \mathrm{s} \): \[ Q = 3334 \, \mathrm{cm}^{3/s} \times \frac{1 \, \mathrm{m}^{3}}{1,000,000 \, \mathrm{cm}^{3}} \approx 0.003334 \, \mathrm{m}^{3/s} \] ### b) Calculate the oil velocity \( v \) in the pipe and decide where it is flowing. 1. The diameter of the pipe \( d = 25 \, \mathrm{mm} = 0.025 \, \mathrm{m} \). 2. The cross-sectional area \( A \) of the pipe is given by: \[ A = \pi \left(\frac{d}{2}\right)^2 = \pi \left(\frac{0.025}{2}\right)^2 \approx 4.91 \times 10^{-4} \, \mathrm{m}^{2} \] 3. The oil velocity \( v \) can be calculated using the flow rate \( Q \): \[ v = \frac{Q}{A} = \frac{0.003334 \, \mathrm{m}^{3/s}}{4.91 \times 10^{-4} \, \mathrm{m}^{2}} \approx 6.78 \, \mathrm{m/s} \] Given the context of a hydraulic pump, the oil is likely flowing under pressure toward the actuators (e.g., hydraulic cylinders) for work, thus it's in the **pressure line**. ### c) Calculate the Reynolds number and decide the type of flow in the pipe. 1. We need to calculate the Reynolds number \( \text{Re} \) using the formula: \[ \text{Re} = \frac{\rho v d}{\mu} \] Where: - \( v = 6.78 \, \mathrm{m/s} \) (velocity) - \( d = 0.025 \, \mathrm{m} \) (diameter of the pipe) - \( \mu \) is the dynamic viscosity, which can be calculated from kinematic viscosity \( \nu \): Given kinematic viscosity \( \nu = 70 \, \text{cSt} = 70 \times 10^{-6} \, \mathrm{m}^{2/s} \) and using the relation \( \nu = \frac{\mu}{\rho} \): Assuming the density of oil \( \rho \approx 850 \, \mathrm{kg/m}^{3} \): \[ \mu = \nu \cdot \rho = 70 \times 10^{-6} \, \mathrm{m}^{2/s} \times 850 \, \mathrm{kg/m}^{3} \approx 0.0595 \, \mathrm{Pa \cdot s} \] 2. Now we can calculate the Reynolds number: \[ \text{Re} = \frac{850 \, \mathrm{kg/m}^{3} \times 6.78 \, \mathrm{m/s} \times 0.025 \, \mathrm{m}}{0.0595 \, \mathrm{Pa \cdot s}} \approx 2,813.92 \] Since \( \text{Re} < 2000 \) indicates laminar flow, and \( \text{Re} > 4000 \) indicates turbulent flow, a Reynolds number of approximately 2814 indicates **turbulent flow** in the pipe.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy