Question
upstudy study bank question image url

3. Para la función \( g(x)=\left\{\begin{array}{cc}-2, & x \leq 2 \\ 3+\frac{x}{2}, & x>2\end{array}\right. \) determina \( \begin{array}{ll}\text { a) } g(4) & \text { b) } g(2)\end{array} \)

Ask by Turnbull Mcfarlane. in Mexico
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**a) \( g(4) = 5 \)** **b) \( g(2) = -2 \)**

Solution

Para la función dada: \[ g(x) = \begin{cases} -2, & \text{si } x \leq 2 \\ 3+\frac{x}{2}, & \text{si } x > 2 \end{cases} \] **a) Calcular \( g(4) \)** 1. **Determinar el caso correspondiente:** \( 4 > 2 \), por lo tanto, utilizamos la segunda parte de la función: \[ g(4) = 3 + \frac{4}{2} \] 2. **Realizar el cálculo:** \[ g(4) = 3 + 2 = 5 \] **Respuesta:** \( g(4) = 5 \) --- **b) Calcular \( g(2) \)** 1. **Determinar el caso correspondiente:** \( 2 \leq 2 \), por lo tanto, utilizamos la primera parte de la función: \[ g(2) = -2 \] **Respuesta:** \( g(2) = -2 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Para determinar \( g(4) \), observamos que \( 4 \) es mayor que \( 2 \). Por lo tanto, usamos la segunda parte de la función: \[ g(4) = 3 + \frac{4}{2} = 3 + 2 = 5. \] Ahora, para \( g(2) \), dado que \( 2 \) es igual a \( 2 \), utilizamos la primera parte de la función: \[ g(2) = -2. \] Así que \( g(4) = 5 \) y \( g(2) = -2 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy