Determine the remaining sides and angles of the triangle \( A B C \). \( A=26.61^{\circ} \quad B=34.51^{\circ} \quad C=14.46 \mathrm{~m} \) \( C=\square^{\circ} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the remaining angles and sides of triangle \( ABC \), we can first determine angle \( A \) using the angle sum property of triangles, which states that the sum of the angles in a triangle is always \( 180^\circ \). Thus, angle \( C \) can be calculated as follows: \[ C = 180^\circ - A - B \] \[ C = 180^\circ - 26.61^\circ - 34.51^\circ = 118.88^\circ \] Next, we can find the lengths of sides \( a \) and \( b \) using the Law of Sines: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] Given \( C = 14.46 \, m \): \[ \frac{c}{\sin C} = \frac{14.46}{\sin 118.88^\circ} \] Next, calculate side \( a \): \[ \frac{a}{\sin A} = \frac{14.46}{\sin(118.88^\circ)} \implies a = \frac{14.46 \cdot \sin(26.61^\circ)}{\sin(118.88^\circ)} \] Then, calculate side \( b \): \[ \frac{b}{\sin B} = \frac{14.46}{\sin(118.88^\circ)} \implies b = \frac{14.46 \cdot \sin(34.51^\circ)}{\sin(118.88^\circ)} \] You can now compute values for sides \( a \) and \( b \) for the final result!