Question
upstudy study bank question image url

Determine the value(s) of \( x \) such that \( \left[\begin{array}{lll}x & 2 & 1\end{array}\right]\left[\begin{array}{ccc}-4 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 11 & -1\end{array}\right]\left[\begin{array}{c}x \\ -1 \\ 4\end{array}\right]=[0] \) \( x= \) Note: If there is more than one value separate them by commas.

Ask by Blake Bright. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The values of \( x \) are \( \frac{19 + 3\sqrt{177}}{8} \) and \( \frac{19 - 3\sqrt{177}}{8} \).

Solution

To determine the value(s) of \( x \) that satisfy the equation: \[ \left[\begin{array}{lll}x & 2 & 1\end{array}\right]\left[\begin{array}{ccc}-4 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 11 & -1\end{array}\right]\left[\begin{array}{c}x \\ -1 \\ 4\end{array}\right] = 0, \] let's break down the problem step by step. ### Step 1: Matrix Multiplication First, compute the product of the first two matrices: \[ \left[\begin{array}{lll}x & 2 & 1\end{array}\right] \times \left[\begin{array}{ccc}-4 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 11 & -1\end{array}\right] = \left[\begin{array}{ccc} -4x - 2 + 4 & -x + 4 + 3 & 4x + 22 - 1 \end{array}\right]. \] Simplifying, we get: \[ \left[\begin{array}{ccc} -4x + 2 & -x + 7 & 4x + 21 \end{array}\right]. \] ### Step 2: Final Multiplication with the Column Vector Next, multiply the resulting row vector with the column vector: \[ \left[\begin{array}{ccc} -4x + 2 & -x + 7 & 4x + 21 \end{array}\right] \times \left[\begin{array}{c}x \\ -1 \\ 4\end{array}\right]. \] This results in the scalar equation: \[ (-4x + 2)x + (-x + 7)(-1) + (4x + 21)(4) = 0. \] Expanding and simplifying: \[ -4x^2 + 2x + x - 7 + 16x + 84 = 0 \\ -4x^2 + 19x + 77 = 0. \] ### Step 3: Solving the Quadratic Equation We solve the quadratic equation: \[ -4x^2 + 19x + 77 = 0. \] Multiplying through by \(-1\) for simplicity: \[ 4x^2 - 19x - 77 = 0. \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 4 \), \( b = -19 \), and \( c = -77 \): \[ x = \frac{19 \pm \sqrt{(-19)^2 - 4(4)(-77)}}{8} = \frac{19 \pm \sqrt{361 + 1232}}{8} = \frac{19 \pm \sqrt{1593}}{8}. \] Since \( 1593 = 9 \times 177 = 9 \times 3 \times 59 \), the square root simplifies to: \[ \sqrt{1593} = 3\sqrt{177}. \] Thus, the solutions are: \[ x = \frac{19 + 3\sqrt{177}}{8}, \quad x = \frac{19 - 3\sqrt{177}}{8}. \] ### Final Answer \[ \boxed{\frac{19+3\,\sqrt{177}}{8},\ \frac{19-3\,\sqrt{177}}{8}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve the equation \[ \left[\begin{array}{lll}x & 2 & 1\end{array}\right]\left[\begin{array}{ccc}-4 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 11 & -1\end{array}\right]\left[\begin{array}{c}x \\ -1 \\ 4\end{array}\right]=[0], \] we will first compute the product of the matrices involved. Let us denote \[ A = \left[\begin{array}{ccc}-4 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 11 & -1\end{array}\right] \] and \[ \mathbf{v} = \left[\begin{array}{c}x \\ -1 \\ 4\end{array}\right]. \] First, we compute \( A \mathbf{v} \): \[ A \mathbf{v} = \left[\begin{array}{ccc}-4 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 11 & -1\end{array}\right]\left[\begin{array}{c}x \\ -1 \\ 4\end{array}\right] \] Calculating each component: 1st component: \[ -4x - 1(-1) + 4 \cdot 4 = -4x + 1 + 16 = -4x + 17 \] 2nd component: \[ -1 \cdot x + 2(-1) + 3 \cdot 4 = -x - 2 + 12 = -x + 10 \] 3rd component: \[ 4x + 11(-1) - 1 \cdot 4 = 4x - 11 - 4 = 4x - 15 \] Hence, \[ A \mathbf{v} = \left[\begin{array}{c}-4x + 17 \\ -x + 10 \\ 4x - 15\end{array}\right]. \] Next, we compute: \[ \left[\begin{array}{lll}x & 2 & 1\end{array}\right] \left[\begin{array}{c}-4x + 17 \\ -x + 10 \\ 4x - 15\end{array}\right]. \] This results in: \[ x(-4x + 17) + 2(-x + 10) + 1(4x - 15) = -4x^2 + 17x - 2x + 20 + 4x - 15. \] Combine like terms: \[ -4x^2 + (17x - 2x + 4x) + (20 - 15) = -4x^2 + 19x + 5. \] We need to set this expression to equal zero: \[ -4x^2 + 19x + 5 = 0. \] Multiplying through by -1 gives: \[ 4x^2 - 19x - 5 = 0. \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 4 \), \( b = -19 \), and \( c = -5 \): Calculate the discriminant: \[ b^2 - 4ac = (-19)^2 - 4(4)(-5) = 361 + 80 = 441. \] Now, substitute into the quadratic formula: \[ x = \frac{19 \pm \sqrt{441}}{8} = \frac{19 \pm 21}{8}. \] This gives two solutions: 1. \( x = \frac{40}{8} = 5 \) 2. \( x = \frac{-2}{8} = -\frac{1}{4} \) Therefore, the values of \( x \) are: \[ \boxed{5, -\frac{1}{4}}. \]

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy