Question
upstudy study bank question image url

\( \sqrt{\frac{10}{11}}=\square \) (Simplify your answer, including any radicals.

Ask by Burgess Rodriguez. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \sqrt{\frac{10}{11}} = \frac{\sqrt{110}}{11} \]

Solution

To simplify the expression \( \sqrt{\frac{10}{11}} \), we can rationalize the denominator. Here's how you can do it step by step: 1. **Separate the Square Root:** \[ \sqrt{\frac{10}{11}} = \frac{\sqrt{10}}{\sqrt{11}} \] 2. **Rationalize the Denominator:** To eliminate the square root in the denominator, multiply both the numerator and the denominator by \( \sqrt{11} \): \[ \frac{\sqrt{10}}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{11}} = \frac{\sqrt{10} \times \sqrt{11}}{11} \] 3. **Simplify the Numerator:** Multiply the radicals in the numerator: \[ \sqrt{10} \times \sqrt{11} = \sqrt{110} \] 4. **Final Simplified Form:** \[ \frac{\sqrt{110}}{11} \] So, the simplified form of \( \sqrt{\frac{10}{11}} \) is: \[ \boxed{\dfrac{\sqrt{110}}{11}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

The expression \( \sqrt{\frac{10}{11}} \) can be simplified by separating the numerator and the denominator inside the square root. This gives us: \[ \sqrt{\frac{10}{11}} = \frac{\sqrt{10}}{\sqrt{11}} \] Now, if you want to rationalize the denominator, you can multiply the numerator and denominator by \( \sqrt{11} \): \[ \frac{\sqrt{10}}{\sqrt{11}} \cdot \frac{\sqrt{11}}{\sqrt{11}} = \frac{\sqrt{110}}{11} \] So, the simplified form of \( \sqrt{\frac{10}{11}} \) is: \[ \frac{\sqrt{10}}{\sqrt{11}} \quad \text{or} \quad \frac{\sqrt{110}}{11} \] Both forms are valid, depending on whether you prefer to keep the denominator as a square root or rationalized.

Latest Pre Algebra Questions

Write down the next two terms for each geometric sequence. a \( 2 ; 4 ; 8 ; 16 ; \ldots \) b \( 5 ; 15 ; 45 ; \ldots \) c \( 3 ; 6 ; 12 ; 24 ; \ldots \) d \( 18 ; 6 ; 2 ; \ldots \) e \( 20 ; 10 ; 5 ; \ldots \) f \( 4 ;-12 ; 36 ; \ldots \) g \( 7 ;-14 ; 28 ; \ldots \) h \( 8 ; 4 ; 2 ; \ldots \) i \( \frac{1}{9} ; \frac{1}{3} ; 1 ; \ldots \) j \( 500(1,25) ; 500(1,25)^{2} ; 500(1,25)^{3} ; \ldots \) k \( 1000(1,8) ; 1000(1,8)^{2} ; 1000(1,8)^{3} ; \ldots \) i \( 6000(1,1) ; 6000(1,1)^{2} ; 6000(1,1)^{3} ; \ldots \) m \( 400\left(1+\frac{0,09}{12}\right) ; 400\left(1+\frac{0,09}{12}\right)^{2} ; 400\left(1+\frac{0,09}{12}\right)^{3} ; \ldots \) n \( 300\left(1+\frac{0,1125}{4}\right) ; 300\left(1+\frac{0,1125}{4}\right)^{2} ; 300\left(1+\frac{0,1125}{4}\right)^{3} ; \ldots \) o \( x\left(1+\frac{0,092}{2}\right) ; x\left(1+\frac{0,092}{2}\right)^{2} ; x\left(1+\frac{0,092}{2}\right)^{3} ; \ldots \) 2 Find the first three terms for each geometric sequence. a \( \mathrm{T}_{1}=2 \) and \( r=3 \) b \( \mathrm{T}_{1}=4 \) and \( r=\frac{1}{2} \) c \( \mathrm{T}_{1}=12 \) and \( r=\frac{-1}{3} \) d \( T_{1}=500 \) and \( r=1,1 \) e. \( \mathrm{T}_{1}=8000 \) and \( r=\left(1+\frac{0,09}{4}\right) \) f \( T_{1}=3 \) and \( T_{6}=96 \) g \( \quad T_{1}=7 \) and \( T_{5}=\frac{7}{81} \) h \( T_{2}=6 \) and \( T_{7}=192 \) \( T_{3}=18 \) and \( T_{5}=162 \) -d \( T_{3}=16 \) and \( T_{7}=256 \) k \( T_{2}=10 \) and \( T_{5}=80 \) I \( T_{2}=3 \) and \( T_{6}=\frac{1}{27} \) Determine: a which term is equal to 1280 in the sequence \( 5 ; 10 ; 20 ; \ldots \) b which term is equal to 1536 in the sequence \( 3 ; 6 ; 12 ; \ldots \) c which term is equal to 6561 in the sequence \( 3 ; 9 ; 27 ; \ldots \) d which term is equal to \( \frac{5}{16384} \) in the sequence \( \frac{5}{4} ; \frac{5}{8} ; \frac{5}{16} ; \ldots \) e which term is equal to \( \frac{1}{8192} \) in the sequence \( 16 ; 8 ; 4 ; \ldots \)
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy