b. \( (-2)^{3} \cdot\left[-5+(-3)^{2}+(-2) \cdot(+2)^{3}\right]-(-3)^{2} \cdot(-3 \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To simplify the expression \( (-2)^{3} \cdot \left[-5 + (-3)^{2} + (-2) \cdot (+2)^{3}\right] - (-3)^{2} \cdot (-3) \): First, calculate each part step by step. 1. \( (-2)^{3} = -8 \) 2. \( (-3)^{2} = 9 \) 3. \( (+2)^{3} = 8 \) 4. \( (-2) \cdot 8 = -16 \) Now substitute these values back into the expression: \[ -8 \cdot \left[-5 + 9 - 16\right] - 9 \cdot (-3) \] Inside the brackets: \[ -5 + 9 - 16 = -12 \] Now we have: \[ -8 \cdot (-12) + 27 \quad (\text{since } -9 \cdot -3 = 27) \] Calculating this gives: \[ 96 + 27 = 123 \] So, the final result is: \[ \boxed{123} \]