3) If \( \mathrm{A}=20^{\circ} \) and \( \mathrm{B}=30^{\circ} \) determine the value of the following correct to 1 decimal place: \( \begin{array}{ll}\text { a) } 2 \sin B & \text { e) } \cos \left(90^{\circ}-B\right) \\ \text { b) } \frac{\sqrt{3}}{2} \cos B & \text { () } 2 \sin \left(2,5^{\circ}+A\right) \cos \left(2,5^{\circ}+A\right) \\ \text { e) } \cos (A+2 B) & \text { g) } \cos ^{2}(A)+\sin ^{2}(A)\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
Let's calculate each of the expressions step by step based on the provided angles \( A = 20^\circ \) and \( B = 30^\circ \). **a)** \( 2 \sin B = 2 \sin(30^\circ) = 2 \times \frac{1}{2} = 1.0 \) **b)** \( \frac{\sqrt{3}}{2} \cos B = \frac{\sqrt{3}}{2} \cos(30^\circ) = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} = \frac{3}{4} = 0.75 \) **c)** \( 2 \sin(2.5^\circ + A) \cos(2.5^\circ + A) = \sin(2(2.5^\circ + 20^\circ)) = \sin(45^\circ) = \frac{\sqrt{2}}{2} \approx 0.707 \) **d)** \( \cos(A + 2B) = \cos(20^\circ + 60^\circ) = \cos(80^\circ) \approx 0.1736 \) **e)** \( \cos^2(A) + \sin^2(A) = 1 \) (This is the Pythagorean identity) Now rounding the values to one decimal place, we have: - a) \( 1.0 \) - b) \( 0.8 \) - c) \( 0.7 \) - d) \( 0.2 \) - e) \( 1.0 \) Here are the final results rounded to one decimal place: - a) \( 1.0 \) - b) \( 0.8 \) - c) \( 0.7 \) - d) \( 0.2 \) - e) \( 1.0 \) - g) \( 1.0 \)