Question
upstudy study bank question image url

20) \( \left(\frac{x^{-7} y^{-2} z^{10}}{\left(x^{-1} y^{-2} z^{0} \cdot\left(x^{7} y^{8} z^{-3}\right)^{10}\right)^{9}}\right)^{10} \)

Ask by Martin Rowe. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified form of the expression is \( \frac{z^{2800}}{x^{6280} y^{7040}} \).

Solution

Simplify the expression by following steps: - step0: Solution: \(\left(\frac{x^{-7}y^{-2}z^{10}}{\left(\left(x^{-1}y^{-2}z^{0}\left(x^{7}y^{8}z^{-3}\right)^{10}\right)^{9}\right)}\right)^{10}\) - step1: Evaluate: \(\left(\frac{x^{-7}y^{-2}z^{10}}{\left(x^{-1}y^{-2}z^{0}\left(x^{7}y^{8}z^{-3}\right)^{10}\right)^{9}}\right)^{10}\) - step2: Evaluate the power: \(\left(\frac{x^{-7}y^{-2}z^{10}}{\left(x^{-1}y^{-2}\times 1\times \left(x^{7}y^{8}z^{-3}\right)^{10}\right)^{9}}\right)^{10}\) - step3: Multiply the terms: \(\left(\frac{x^{-7}y^{-2}z^{10}}{\left(\frac{x^{69}y^{78}}{z^{30}}\right)^{9}}\right)^{10}\) - step4: Divide the terms: \(\left(\frac{z^{280}}{x^{628}y^{704}}\right)^{10}\) - step5: Rewrite the expression: \(\frac{\left(z^{280}\right)^{10}}{\left(x^{628}y^{704}\right)^{10}}\) - step6: Evaluate the power: \(\frac{z^{2800}}{x^{6280}y^{7040}}\) To simplify the expression \[ \left(\frac{x^{-7} y^{-2} z^{10}}{\left(x^{-1} y^{-2} z^{0} \cdot\left(x^{7} y^{8} z^{-3}\right)^{10}\right)^{9}}\right)^{10}, \] we can break it down step by step. 1. **Simplify the denominator:** - The denominator is \(\left(x^{-1} y^{-2} z^{0} \cdot (x^{7} y^{8} z^{-3})^{10}\right)^{9}\). - First, simplify \((x^{7} y^{8} z^{-3})^{10}\): \[ (x^{7})^{10} = x^{70}, \quad (y^{8})^{10} = y^{80}, \quad (z^{-3})^{10} = z^{-30}. \] Thus, \[ (x^{7} y^{8} z^{-3})^{10} = x^{70} y^{80} z^{-30}. \] - Now, combine this with \(x^{-1} y^{-2} z^{0}\): \[ x^{-1} y^{-2} z^{0} \cdot x^{70} y^{80} z^{-30} = x^{69} y^{78} z^{-30}. \] - Now raise this to the 9th power: \[ (x^{69} y^{78} z^{-30})^{9} = x^{621} y^{702} z^{-270}. \] 2. **Combine the numerator and denominator:** - The entire expression now looks like: \[ \frac{x^{-7} y^{-2} z^{10}}{x^{621} y^{702} z^{-270}}. \] - This can be simplified by subtracting the exponents: \[ x^{-7 - 621} y^{-2 - 702} z^{10 - (-270)} = x^{-628} y^{-704} z^{280}. \] 3. **Raise the entire fraction to the 10th power:** - Now we raise the simplified expression to the 10th power: \[ (x^{-628} y^{-704} z^{280})^{10} = x^{-6280} y^{-7040} z^{2800}. \] 4. **Final result:** - The final simplified expression is: \[ \frac{z^{2800}}{x^{6280} y^{7040}}. \] Thus, the simplified form of the original expression is \[ \frac{z^{2800}}{x^{6280} y^{7040}}. \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To simplify the expression \( \left(\frac{x^{-7} y^{-2} z^{10}}{\left(x^{-1} y^{-2} z^{0} \cdot\left(x^{7} y^{8} z^{-3}\right)^{10}\right)^{9}}\right)^{10} \), we first need to simplify the denominator. 1. **Simplify the base of the denominator**: - Inside the denominator, we have: \[ x^{-1} y^{-2} z^{0} \cdot \left(x^{7} y^{8} z^{-3}\right)^{10} \] - The term \((x^{7} y^{8} z^{-3})^{10}\) simplifies to \(x^{70} y^{80} z^{-30}\). - Therefore, we can rewrite the expression as: \[ x^{-1} y^{-2} \cdot x^{70} y^{80} z^{-30} \] This combines to: \[ x^{-1 + 70} y^{-2 + 80} z^{-30} = x^{69} y^{78} z^{-30} \] 2. **Raise the whole denominator to the power of 9**: - We need to raise each component to the 9th power, yielding: \[ (x^{69} y^{78} z^{-30})^{9} = x^{621} y^{702} z^{-270} \] 3. **Rewrite the initial expression with the simplified denominator**: - Now our expression looks like: \[ \frac{x^{-7} y^{-2} z^{10}}{x^{621} y^{702} z^{-270}} \] 4. **Simplify the fraction**: - We can rewrite it as: \[ x^{-7 - 621} y^{-2 - 702} z^{10 + 270} = x^{-628} y^{-704} z^{280} \] 5. **Raise the entire fraction to the power of 10**: - Finally, we raise our result to the power of 10, giving: \[ (x^{-628} y^{-704} z^{280})^{10} = x^{-6280} y^{-7040} z^{2800} \] Thus, the simplified expression is: \[ \boxed{x^{-6280} y^{-7040} z^{2800}} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy