Answer
- **Log over Grand Canyon (5.65s):** Velocity at impact ≈ 55.43 m/s, distance fallen ≈ 156.58 meters
- **Quarter from tower (3.25s):** Velocity after 1.40s ≈ 13.73 m/s, distance fallen ≈ 51.81 meters
- **Peach from tower (7.56s):** Building height ≈ 280.34 meters
- **Croissant from Eiffel Tower:** Time to fall ≈ 81.69 seconds
- **Seagull poop impact:** Height ≈ 276.84 meters
- **Log over Grand Canyon (8.35s):** Velocity at impact ≈ 81.91 m/s, distance fallen ≈ 341.99 meters
Solution
Let's solve the problems step by step, using the known conditions and the provided formulas.
### Problem 5: Log over the Grand Canyon
1. **Given:**
- Time \( t = 5.65 \) seconds
- Acceleration due to gravity \( g = 9.81 \, \mathrm{m/s^2} \)
2. **Calculate the velocity at impact \( v \):**
\[
v = g \cdot t
\]
3. **Calculate the distance fallen \( d \):**
\[
d = \frac{1}{2} g t^2
\]
Now, let's perform the calculations for both \( v \) and \( d \).
### Problem 8: Quarter dropped from a tower
1. **Given:**
- Time \( t = 3.25 \) seconds
- Acceleration due to gravity \( g = 9.81 \, \mathrm{m/s^2} \)
2. **Calculate the velocity after \( 1.40 \) seconds of free fall:**
\[
v = g \cdot t
\]
where \( t = 1.40 \) seconds.
3. **Calculate the distance fallen when it hit the ground:**
\[
d = \frac{1}{2} g t^2
\]
### Problem 7: Peach dropped from a tower
1. **Given:**
- Time \( t = 7.56 \) seconds
- Acceleration due to gravity \( g = 9.81 \, \mathrm{m/s^2} \)
2. **Calculate the height of the building \( d \):**
\[
d = \frac{1}{2} g t^2
\]
### Problem 8: Croissant dropped from the Eiffel Tower
1. **Given:**
- Height \( d = 400.7 \) m
- Acceleration due to gravity \( g = 9.81 \, \mathrm{m/s^2} \)
2. **Calculate the time \( t \) it took to fall:**
\[
d = \frac{1}{2} g t^2
\]
### Problem 9: Seagull poop impact velocity
1. **Given:**
- Impact velocity \( v = 73.7 \, \mathrm{m/s} \)
- Acceleration due to gravity \( g = 9.81 \, \mathrm{m/s^2} \)
2. **Calculate the height \( d \) from which the seagull dropped:**
\[
d = \frac{v^2}{2g}
\]
### Problem 10: Log over the Grand Canyon (second instance)
1. **Given:**
- Time \( t = 8.35 \) seconds
- Acceleration due to gravity \( g = 9.81 \, \mathrm{m/s^2} \)
2. **Calculate the velocity at impact \( v \):**
\[
v = g \cdot t
\]
3. **Calculate the distance fallen \( d \):**
\[
d = \frac{1}{2} g t^2
\]
Now, let's perform all the calculations in parallel.
Calculate the value by following steps:
- step0: Calculate:
\(9.81\times 1.4\)
- step1: Multiply the numbers:
\(13.734\)
Calculate or simplify the expression \( 9.81 * 8.35 \).
Calculate the value by following steps:
- step0: Calculate:
\(9.81\times 8.35\)
- step1: Multiply the numbers:
\(81.9135\)
Calculate or simplify the expression \( 9.81 * 5.65 \).
Calculate the value by following steps:
- step0: Calculate:
\(9.81\times 5.65\)
- step1: Multiply the numbers:
\(55.4265\)
Calculate or simplify the expression \( (400.7 * 2) / 9.81 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(400.7\times 2\right)}{9.81}\)
- step1: Remove the parentheses:
\(\frac{400.7\times 2}{9.81}\)
- step2: Multiply the numbers:
\(\frac{801.4}{9.81}\)
- step3: Convert the expressions:
\(\frac{\frac{4007}{5}}{\frac{981}{100}}\)
- step4: Multiply by the reciprocal:
\(\frac{4007}{5}\times \frac{100}{981}\)
- step5: Reduce the numbers:
\(4007\times \frac{20}{981}\)
- step6: Multiply:
\(\frac{4007\times 20}{981}\)
- step7: Multiply:
\(\frac{80140}{981}\)
Calculate or simplify the expression \( 0.5 * 9.81 * (8.35^2) \).
Calculate the value by following steps:
- step0: Calculate:
\(0.5\times 9.81\times 8.35^{2}\)
- step1: Convert the expressions:
\(0.5\times 9.81\left(\frac{167}{20}\right)^{2}\)
- step2: Multiply the terms:
\(4.905\left(\frac{167}{20}\right)^{2}\)
- step3: Convert the expressions:
\(\frac{981}{200}\left(\frac{167}{20}\right)^{2}\)
- step4: Multiply the numbers:
\(\frac{27359109}{80000}\)
Calculate or simplify the expression \( 0.5 * 9.81 * (7.56^2) \).
Calculate the value by following steps:
- step0: Calculate:
\(0.5\times 9.81\times 7.56^{2}\)
- step1: Convert the expressions:
\(0.5\times 9.81\left(\frac{189}{25}\right)^{2}\)
- step2: Multiply the terms:
\(4.905\left(\frac{189}{25}\right)^{2}\)
- step3: Convert the expressions:
\(\frac{981}{200}\left(\frac{189}{25}\right)^{2}\)
- step4: Multiply the numbers:
\(\frac{35042301}{125000}\)
Calculate or simplify the expression \( 0.5 * 9.81 * (5.65^2) \).
Calculate the value by following steps:
- step0: Calculate:
\(0.5\times 9.81\times 5.65^{2}\)
- step1: Convert the expressions:
\(0.5\times 9.81\left(\frac{113}{20}\right)^{2}\)
- step2: Multiply the terms:
\(4.905\left(\frac{113}{20}\right)^{2}\)
- step3: Convert the expressions:
\(\frac{981}{200}\left(\frac{113}{20}\right)^{2}\)
- step4: Multiply the numbers:
\(\frac{12526389}{80000}\)
Calculate or simplify the expression \( 0.5 * 9.81 * (3.25^2) \).
Calculate the value by following steps:
- step0: Calculate:
\(0.5\times 9.81\times 3.25^{2}\)
- step1: Convert the expressions:
\(0.5\times 9.81\left(\frac{13}{4}\right)^{2}\)
- step2: Multiply the terms:
\(4.905\left(\frac{13}{4}\right)^{2}\)
- step3: Convert the expressions:
\(\frac{981}{200}\left(\frac{13}{4}\right)^{2}\)
- step4: Multiply the numbers:
\(\frac{165789}{3200}\)
Calculate or simplify the expression \( (73.7^2) / (2 * 9.81) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{73.7^{2}}{\left(2\times 9.81\right)}\)
- step1: Remove the parentheses:
\(\frac{73.7^{2}}{2\times 9.81}\)
- step2: Convert the expressions:
\(\frac{\left(\frac{737}{10}\right)^{2}}{2\times 9.81}\)
- step3: Multiply the numbers:
\(\frac{\left(\frac{737}{10}\right)^{2}}{19.62}\)
- step4: Convert the expressions:
\(\frac{\left(\frac{737}{10}\right)^{2}}{\frac{981}{50}}\)
- step5: Evaluate the power:
\(\frac{\frac{737^{2}}{100}}{\frac{981}{50}}\)
- step6: Multiply by the reciprocal:
\(\frac{737^{2}}{100}\times \frac{50}{981}\)
- step7: Reduce the numbers:
\(\frac{737^{2}}{2}\times \frac{1}{981}\)
- step8: Multiply the fractions:
\(\frac{737^{2}}{2\times 981}\)
- step9: Multiply:
\(\frac{737^{2}}{1962}\)
Here are the detailed calculations and results for each problem:
### Problem 5: Log over the Grand Canyon
1. **Velocity at impact \( v \):**
\[
v = 9.81 \cdot 5.65 \approx 55.43 \, \mathrm{m/s}
\]
2. **Distance fallen \( d \):**
\[
d = \frac{1}{2} \cdot 9.81 \cdot (5.65^2) \approx 156.58 \, \mathrm{m}
\]
### Problem 8: Quarter dropped from a tower
1. **Velocity after \( 1.40 \) seconds:**
\[
v = 9.81 \cdot 1.40 \approx 13.73 \, \mathrm{m/s}
\]
2. **Distance fallen when it hit the ground:**
\[
d = \frac{1}{2} \cdot 9.81 \cdot (3.25^2) \approx 51.81 \, \mathrm{m}
\]
### Problem 7: Peach dropped from a tower
1. **Height of the building:**
\[
d = \frac{1}{2} \cdot 9.81 \cdot (7.56^2) \approx 280.34 \, \mathrm{m}
\]
### Problem 8: Croissant dropped from the Eiffel Tower
1. **Time it took to fall:**
\[
t = \sqrt{\frac{2 \cdot 400.7}{9.81}} \approx 81.69 \, \mathrm{s}
\]
### Problem 9: Seagull poop impact velocity
1. **Height from which the seagull dropped:**
\[
d = \frac{(73.7)^2}{2 \cdot 9.81} \approx 276.84 \, \mathrm{m}
\]
### Problem 10: Log over the Grand Canyon (second instance)
1. **Velocity at impact \( v \):**
\[
v = 9.81 \cdot 8.35 \approx 81.91 \, \mathrm{m/s}
\]
2. **Distance fallen \( d \):**
\[
d = \frac{1}{2} \cdot 9.81 \cdot (8.35^2) \approx 341.99 \, \mathrm{m}
\]
### Summary of Results:
- **Log over Grand Canyon (5.65s):** \( v \approx 55.43 \, \mathrm{m/s}, d \approx 156.58 \, \mathrm{m} \)
- **Quarter from tower (3.25s):** \( v \approx 13.73 \, \mathrm{m/s}, d \approx 51.81 \, \mathrm{m} \)
- **Peach from tower (7.56s):** \( d \approx 280.34 \, \mathrm{m} \)
- **Croissant from Eiffel Tower:** \( t \approx 81.69 \, \mathrm{s} \)
- **Seagull poop impact:** \( d \approx 276.84 \, \mathrm{m} \)
- **Log over Grand Canyon (8.35s):** \( v \approx 81.91 \, \mathrm{m/s}, d \approx 341.99 \, \mathrm{m} \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution