Answer
1. \( \frac{3}{x^2} + \frac{5}{x} - 2 \)
2. \( a^4b^4 - c^4 \)
3. \( (a - 2)(a + 2)(a^2 - 2a + 4)(a^2 + 2a + 4) \)
4. \( a^{2x} - b^{2y} \)
Solution
Sure, let's simplify and analyze each of the provided expressions step by step.
---
### 1. \( \left(\frac{1}{x} + 2\right)\left(\frac{3}{x} - 1\right) \)
**Simplification:**
Multiply the two binomials using the distributive property (FOIL method):
\[
\begin{align*}
\left(\frac{1}{x} + 2\right)\left(\frac{3}{x} - 1\right) &= \frac{1}{x} \cdot \frac{3}{x} + \frac{1}{x} \cdot (-1) + 2 \cdot \frac{3}{x} + 2 \cdot (-1) \\
&= \frac{3}{x^2} - \frac{1}{x} + \frac{6}{x} - 2 \\
&= \frac{3}{x^2} + \left(-\frac{1}{x} + \frac{6}{x}\right) - 2 \\
&= \frac{3}{x^2} + \frac{5}{x} - 2
\end{align*}
\]
**Final Simplified Form:**
\[
\frac{3}{x^2} + \frac{5}{x} - 2
\]
---
### 2. \( (a b + c)\left(a^{2} b^{2} + c^{2}\right)(a b - c) \)
**Simplification:**
Notice that \( (ab + c)(ab - c) \) is a difference of squares:
\[
(ab + c)(ab - c) = (ab)^2 - c^2 = a^2b^2 - c^2
\]
Now, multiply this result by the remaining factor \( a^{2} b^{2} + c^{2} \):
\[
(a^2b^2 - c^2)(a^2b^2 + c^2) = (a^2b^2)^2 - (c^2)^2 = a^4b^4 - c^4
\]
**Final Simplified Form:**
\[
a^4b^4 - c^4
\]
---
### 3. \( (a - 2)\left(a^{3} + 8\right)\left(a^{2} + 2 a + 4\right) \)
**Simplification:**
Firstly, recognize that \( a^3 + 8 \) is a sum of cubes:
\[
a^3 + 8 = a^3 + 2^3 = (a + 2)(a^2 - 2a + 4)
\]
Now, substitute this back into the original expression:
\[
(a - 2)(a + 2)(a^2 - 2a + 4)\left(a^{2} + 2 a + 4\right)
\]
Notice that \( a^2 - 2a + 4 \) and \( a^2 + 2a + 4 \) are quadratic terms that don’t factor further over the real numbers.
**Final Factored Form:**
\[
(a - 2)(a + 2)(a^2 - 2a + 4)(a^2 + 2a + 4)
\]
*Alternatively*, if you prefer to leave the expression partially factored:
\[
(a - 2)(a^3 + 8)(a^2 + 2a + 4)
\]
---
### 4. \( \left(a^{x} - b^{y}\right)\left(a^{x} + b^{y}\right) \)
**Simplification:**
This follows the pattern of the difference of squares:
\[
(a^x - b^y)(a^x + b^y) = (a^x)^2 - (b^y)^2 = a^{2x} - b^{2y}
\]
**Final Simplified Form:**
\[
a^{2x} - b^{2y}
\]
---
If you have any specific questions about these simplifications or need further assistance, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution