Question
5) \( -3 e^{2}+4 f^{2}-c f^{2} \) b) \( -2 x b-7 a b+6 t \) h) \( 2 x y+5 x y-4 x y \) D \( \frac{1}{4} x^{2}-\frac{3}{x} x^{2}= \)
Ask by Bradley Rodriquez. in Mexico
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
5) \( -3e^{2} + 4f^{2} - cf^{2} \)
b) \( -2xb - 7ab + 6t \)
h) \( 3xy \)
D) \( \frac{1}{4}x^{2} - 3x \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(-2xb-7ab+6t\)
Calculate or simplify the expression \( 2 x y+5 x y-4 x y \).
Simplify the expression by following steps:
- step0: Solution:
\(2xy+5xy-4xy\)
- step1: Collect like terms:
\(\left(2+5-4\right)xy\)
- step2: Calculate:
\(3xy\)
Calculate or simplify the expression \( -3 e^{2}+4 f^{2}-c f^{2} \).
Simplify the expression by following steps:
- step0: Solution:
\(-3e^{2}+4f^{2}-cf^{2}\)
Calculate or simplify the expression \( \frac{1}{4} x^{2}-\frac{3}{x} x^{2} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{1}{4}x^{2}-\frac{3}{x}\times x^{2}\)
- step1: Reduce the fraction:
\(\frac{1}{4}x^{2}-3x\)
Aquí están las simplificaciones de las expresiones que proporcionaste:
5) \( -3 e^{2}+4 f^{2}-c f^{2} \) se simplifica a:
\[
-3e^{2}+4f^{2}-cf^{2}
\]
b) \( -2 x b-7 a b+6 t \) se simplifica a:
\[
-2xb-7ab+6t
\]
h) \( 2 x y+5 x y-4 x y \) se simplifica a:
\[
3xy
\]
D) \( \frac{1}{4} x^{2}-\frac{3}{x} x^{2} \) se simplifica a:
\[
\frac{1}{4}x^{2}-3x
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
The Deep Dive
Let’s dive into these expressions! For the first expression \( -3 e^{2}+4 f^{2}-c f^{2} \), combine like terms involving \( f^2 \) to get \( (4 - c)f^{2} - 3e^{2} \). It’s always fun to combine terms and see the simplification come to life! Now, consider the expression \( -2 x b-7 a b+6 t \). Here, notice that while the terms \( -2xb \) and \( -7ab \) can be grouped by \( b \), the \( 6t \) doesn't share a factor, keeping it distinct. So, it simplifies to \( (-2xb - 7ab) + 6t \). It’s like piecing together a puzzle while ensuring every piece fits just right!