Question
upstudy study bank question image url

Solve for \( x \). \[ 13^{-2 x}=9^{-x-2} \] Write the exact answer using either base-10 or base-e logarithms \( x=\square \)

Ask by Edwards Goodwin. in the United States
Jan 11,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( x = \frac{2}{\log_{3}(13) - 1} \)

Solution

Solve the equation \( 13^{-2x}=9^{-x-2} \). Solve the equation by following steps: - step0: Solve for \(x\): \(13^{-2x}=9^{-x-2}\) - step1: Take the logarithm of both sides: \(\log_{9}{\left(13^{-2x}\right)}=\log_{9}{\left(9^{-x-2}\right)}\) - step2: Evaluate the logarithm: \(\frac{-2x}{2}\times \log_{3}{\left(13\right)}=\frac{2\left(-x-2\right)}{2}\) - step3: Rewrite the expression: \(-\frac{2x\log_{3}{\left(13\right)}}{2}=\frac{2\left(-x-2\right)}{2}\) - step4: Multiply both sides of the equation by LCD: \(-\frac{2x\log_{3}{\left(13\right)}}{2}\times 2=\frac{2\left(-x-2\right)}{2}\times 2\) - step5: Simplify the equation: \(-2\log_{3}{\left(13\right)}\times x=-2x-4\) - step6: Move the variable to the left side: \(-2\log_{3}{\left(13\right)}\times x+2x=-4\) - step7: Collect like terms: \(\left(-2\log_{3}{\left(13\right)}+2\right)x=-4\) - step8: Change the signs: \(\left(2\log_{3}{\left(13\right)}-2\right)x=4\) - step9: Divide both sides: \(\frac{\left(2\log_{3}{\left(13\right)}-2\right)x}{2\log_{3}{\left(13\right)}-2}=\frac{4}{2\log_{3}{\left(13\right)}-2}\) - step10: Divide the numbers: \(x=\frac{2}{\log_{3}{\left(13\right)}-1}\) The solution to the equation \(13^{-2x}=9^{-x-2}\) is \(x=\frac{2}{\log_{3}(13)-1}\).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the equation \( 13^{-2x} = 9^{-x-2} \), we can start by taking the logarithm of both sides. Taking the natural logarithm (base \( e \)) yields: \[ \ln(13^{-2x}) = \ln(9^{-x-2}) \] Using the property of logarithms \(\ln(a^b) = b \ln(a)\): \[ -2x \ln(13) = (-x - 2) \ln(9) \] Expanding the right side gives: \[ -2x \ln(13) = -x \ln(9) - 2 \ln(9) \] We can rearrange this equation to isolate terms involving \( x \): \[ -2x \ln(13) + x \ln(9) = -2 \ln(9) \] Factoring out \( x \) on the left side: \[ x(-2 \ln(13) + \ln(9)) = -2 \ln(9) \] Thus, solving for \( x \) gives: \[ x = \frac{-2 \ln(9)}{-2 \ln(13) + \ln(9)} \] Simplifying this, we have: \[ x = \frac{2 \ln(9)}{2 \ln(13) - \ln(9)} \] This is the exact solution for \( x \). So, the final answer is: \[ x = \frac{2 \ln(9)}{2 \ln(13) - \ln(9)} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy