Question
upstudy study bank question image url

EXERCISE 5 (a) Simplify the following expressions, without the use of a calculator: (1) \( \sqrt{12}+\sqrt{27}-\sqrt{3} \) (2) \( \sqrt{18}-\sqrt{50}-\sqrt{32} \) (3) \( \sqrt{6} \times \sqrt{3} \) (4) \( \frac{\sqrt{75}}{\sqrt{3}} \) (5) \( (\sqrt{3}+\sqrt{12})^{2} \) (6) \( (\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{5}) \) (7) \( \sqrt{3}\left(\sqrt{12}-\sqrt{1 \frac{1}{3}}\right) \) (8) \( \frac{\sqrt{50}+\sqrt{2}}{\sqrt{18}} \) (9) \( \frac{6 \sqrt{8}+4 \sqrt{18}}{3 \sqrt{32}-\sqrt{72}} \) (10) \( \frac{2 \sqrt{12}+4 \sqrt{20}}{\sqrt{12}+\sqrt{80}} \) 38

Ask by Mcguire Williams. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the simplified results for each expression: 1. \( \sqrt{12}+\sqrt{27}-\sqrt{3} = 4\sqrt{3} \) 2. \( \sqrt{18}-\sqrt{50}-\sqrt{32} = -6\sqrt{2} \) 3. \( \sqrt{6} \times \sqrt{3} = 3\sqrt{2} \) 4. \( \frac{\sqrt{75}}{\sqrt{3}} = 5 \) 5. \( (\sqrt{3}+\sqrt{12})^{2} = 27 \) 6. \( (\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{5}) = -2 \) 7. \( \sqrt{3}\left(\sqrt{12}-\sqrt{1 \frac{1}{3}}\right) = 4 \) 8. \( \frac{\sqrt{50}+\sqrt{2}}{\sqrt{18}} = 2 \) 9. \( \frac{6 \sqrt{8}+4 \sqrt{18}}{3 \sqrt{32}-\sqrt{72}} = 4 \) 10. \( \frac{2 \sqrt{12}+4 \sqrt{20}}{\sqrt{12}+\sqrt{80}} = 2 \)

Solution

Calculate the value by following steps: - step0: Calculate: \(\frac{\sqrt{75}}{\sqrt{3}}\) - step1: Simplify the root: \(\frac{5\sqrt{3}}{\sqrt{3}}\) - step2: Reduce the fraction: \(5\) Calculate or simplify the expression \( \sqrt(6)*\sqrt(3) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{6}\times \sqrt{3}\) - step1: Use the properties of radicals: \(\sqrt{6\times 3}\) - step2: Calculate: \(\sqrt{18}\) - step3: Write as a product: \(\sqrt{9\times 2}\) - step4: Write in exponential form: \(\sqrt{3^{2}\times 2}\) - step5: Use the properties of radicals: \(\sqrt{3^{2}}\times \sqrt{2}\) - step6: Simplify the root: \(3\sqrt{2}\) Calculate or simplify the expression \( (\sqrt(3)+\sqrt(5))(\sqrt(3)-\sqrt(5)) \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)\) - step1: Simplify the product: \(\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}\) - step2: Evaluate the power: \(3-5\) - step3: Subtract the numbers: \(-2\) Calculate or simplify the expression \( (\sqrt(3)+\sqrt(12))^2 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt{3}+\sqrt{12}\right)^{2}\) - step1: Simplify the root: \(\left(\sqrt{3}+2\sqrt{3}\right)^{2}\) - step2: Add the numbers: \(\left(3\sqrt{3}\right)^{2}\) - step3: Evaluate the power: \(9\times 3\) - step4: Multiply the numbers: \(27\) Calculate or simplify the expression \( \sqrt(12)+\sqrt(27)-\sqrt(3) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{12}+\sqrt{27}-\sqrt{3}\) - step1: Simplify the root: \(2\sqrt{3}+\sqrt{27}-\sqrt{3}\) - step2: Simplify the root: \(2\sqrt{3}+3\sqrt{3}-\sqrt{3}\) - step3: Collect like terms: \(\left(2+3-1\right)\sqrt{3}\) - step4: Calculate: \(4\sqrt{3}\) Calculate or simplify the expression \( (\sqrt(50)+\sqrt(2))/\sqrt(18) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\sqrt{50}+\sqrt{2}\right)}{\sqrt{18}}\) - step1: Remove the parentheses: \(\frac{\sqrt{50}+\sqrt{2}}{\sqrt{18}}\) - step2: Simplify the root: \(\frac{5\sqrt{2}+\sqrt{2}}{\sqrt{18}}\) - step3: Simplify the root: \(\frac{5\sqrt{2}+\sqrt{2}}{3\sqrt{2}}\) - step4: Add the numbers: \(\frac{6\sqrt{2}}{3\sqrt{2}}\) - step5: Reduce the fraction: \(2\) Calculate or simplify the expression \( \sqrt(18)-\sqrt(50)-\sqrt(32) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{18}-\sqrt{50}-\sqrt{32}\) - step1: Simplify the root: \(3\sqrt{2}-\sqrt{50}-\sqrt{32}\) - step2: Simplify the root: \(3\sqrt{2}-5\sqrt{2}-\sqrt{32}\) - step3: Simplify the root: \(3\sqrt{2}-5\sqrt{2}-4\sqrt{2}\) - step4: Collect like terms: \(\left(3-5-4\right)\sqrt{2}\) - step5: Subtract the numbers: \(-6\sqrt{2}\) Calculate or simplify the expression \( \sqrt(3)*(\sqrt(12)-\sqrt(1+1/3)) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{3}\times \left(\sqrt{12}-\sqrt{1+\frac{1}{3}}\right)\) - step1: Simplify the root: \(\sqrt{3}\times \left(2\sqrt{3}-\sqrt{1+\frac{1}{3}}\right)\) - step2: Add the numbers: \(\sqrt{3}\times \left(2\sqrt{3}-\sqrt{\frac{4}{3}}\right)\) - step3: Simplify the root: \(\sqrt{3}\times \left(2\sqrt{3}-\frac{2\sqrt{3}}{3}\right)\) - step4: Subtract the numbers: \(\sqrt{3}\times \frac{4\sqrt{3}}{3}\) - step5: Multiply: \(\frac{\sqrt{3}\times 4\sqrt{3}}{3}\) - step6: Multiply: \(\frac{12}{3}\) - step7: Reduce the fraction: \(4\) Calculate or simplify the expression \( (2*\sqrt(12)+4*\sqrt(20))/(\sqrt(12)+\sqrt(80)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(2\sqrt{12}+4\sqrt{20}\right)}{\left(\sqrt{12}+\sqrt{80}\right)}\) - step1: Remove the parentheses: \(\frac{2\sqrt{12}+4\sqrt{20}}{\sqrt{12}+\sqrt{80}}\) - step2: Simplify the root: \(\frac{2\times 2\sqrt{3}+4\sqrt{20}}{\sqrt{12}+\sqrt{80}}\) - step3: Simplify the root: \(\frac{2\times 2\sqrt{3}+4\times 2\sqrt{5}}{\sqrt{12}+\sqrt{80}}\) - step4: Multiply the terms: \(\frac{4\sqrt{3}+4\times 2\sqrt{5}}{\sqrt{12}+\sqrt{80}}\) - step5: Multiply the terms: \(\frac{4\sqrt{3}+8\sqrt{5}}{\sqrt{12}+\sqrt{80}}\) - step6: Simplify the root: \(\frac{4\sqrt{3}+8\sqrt{5}}{2\sqrt{3}+\sqrt{80}}\) - step7: Simplify the root: \(\frac{4\sqrt{3}+8\sqrt{5}}{2\sqrt{3}+4\sqrt{5}}\) - step8: Rewrite the expression: \(\frac{\left(2\sqrt{3}+4\sqrt{5}\right)\times 2}{2\sqrt{3}+4\sqrt{5}}\) - step9: Reduce the fraction: \(2\) Calculate or simplify the expression \( (6*\sqrt(8)+4*\sqrt(18))/(3*\sqrt(32)-\sqrt(72)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(6\sqrt{8}+4\sqrt{18}\right)}{\left(3\sqrt{32}-\sqrt{72}\right)}\) - step1: Remove the parentheses: \(\frac{6\sqrt{8}+4\sqrt{18}}{3\sqrt{32}-\sqrt{72}}\) - step2: Simplify the root: \(\frac{6\times 2\sqrt{2}+4\sqrt{18}}{3\sqrt{32}-\sqrt{72}}\) - step3: Simplify the root: \(\frac{6\times 2\sqrt{2}+4\times 3\sqrt{2}}{3\sqrt{32}-\sqrt{72}}\) - step4: Simplify the root: \(\frac{6\times 2\sqrt{2}+4\times 3\sqrt{2}}{3\times 4\sqrt{2}-\sqrt{72}}\) - step5: Multiply the terms: \(\frac{12\sqrt{2}+4\times 3\sqrt{2}}{3\times 4\sqrt{2}-\sqrt{72}}\) - step6: Multiply the terms: \(\frac{12\sqrt{2}+12\sqrt{2}}{3\times 4\sqrt{2}-\sqrt{72}}\) - step7: Simplify the root: \(\frac{12\sqrt{2}+12\sqrt{2}}{3\times 4\sqrt{2}-6\sqrt{2}}\) - step8: Multiply the terms: \(\frac{12\sqrt{2}+12\sqrt{2}}{12\sqrt{2}-6\sqrt{2}}\) - step9: Add the numbers: \(\frac{24\sqrt{2}}{12\sqrt{2}-6\sqrt{2}}\) - step10: Subtract the numbers: \(\frac{24\sqrt{2}}{6\sqrt{2}}\) - step11: Reduce the fraction: \(4\) Here are the simplified results for each expression: 1. **Expression:** \( \sqrt{12}+\sqrt{27}-\sqrt{3} \) **Simplified Result:** \( 4\sqrt{3} \) 2. **Expression:** \( \sqrt{18}-\sqrt{50}-\sqrt{32} \) **Simplified Result:** \( -6\sqrt{2} \) 3. **Expression:** \( \sqrt{6} \times \sqrt{3} \) **Simplified Result:** \( 3\sqrt{2} \) 4. **Expression:** \( \frac{\sqrt{75}}{\sqrt{3}} \) **Simplified Result:** \( 5 \) 5. **Expression:** \( (\sqrt{3}+\sqrt{12})^{2} \) **Simplified Result:** \( 27 \) 6. **Expression:** \( (\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{5}) \) **Simplified Result:** \( -2 \) 7. **Expression:** \( \sqrt{3}\left(\sqrt{12}-\sqrt{1 \frac{1}{3}}\right) \) **Simplified Result:** \( 4 \) 8. **Expression:** \( \frac{\sqrt{50}+\sqrt{2}}{\sqrt{18}} \) **Simplified Result:** \( 2 \) 9. **Expression:** \( \frac{6 \sqrt{8}+4 \sqrt{18}}{3 \sqrt{32}-\sqrt{72}} \) **Simplified Result:** \( 4 \) 10. **Expression:** \( \frac{2 \sqrt{12}+4 \sqrt{20}}{\sqrt{12}+\sqrt{80}} \) **Simplified Result:** \( 2 \) If you need further explanations or details on any specific step, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Sure, let’s make those expressions a bit easier to digest! (1) \( \sqrt{12}+\sqrt{27}-\sqrt{3} = 2\sqrt{3} + 3\sqrt{3} - \sqrt{3} = 4\sqrt{3} \) (2) \( \sqrt{18}-\sqrt{50}-\sqrt{32} = 3\sqrt{2} - 5\sqrt{2} - 4\sqrt{2} = -6\sqrt{2} \) (3) \( \sqrt{6} \times \sqrt{3} = \sqrt{18} = 3\sqrt{2} \) (4) \( \frac{\sqrt{75}}{\sqrt{3}} = \sqrt{25} = 5 \) (5) \( (\sqrt{3}+\sqrt{12})^{2} = (\sqrt{3}+2\sqrt{3})^{2} = (3\sqrt{3})^{2} = 27 \) (6) \( (\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{5}) = 3 - 5 = -2 \) (7) \( \sqrt{3}(\sqrt{12}-\sqrt{1 \frac{1}{3}}) = \sqrt{3}(2\sqrt{3} - \frac{2}{3}) = \frac{10\sqrt{3}}{3} \) (8) \( \frac{\sqrt{50}+\sqrt{2}}{\sqrt{18}} = \frac{5\sqrt{2}+\sqrt{2}}{3\sqrt{2}} = \frac{6\sqrt{2}}{3\sqrt{2}} = 2 \) (9) \( \frac{6 \sqrt{8}+4 \sqrt{18}}{3 \sqrt{32}-\sqrt{72}} = \frac{12\sqrt{2}+12\sqrt{2}}{12-6} = \frac{24\sqrt{2}}{6} = 4\sqrt{2} \) (10) \( \frac{2 \sqrt{12}+4 \sqrt{20}}{\sqrt{12}+\sqrt{80}} = \frac{4\sqrt{3}+8\sqrt{5}}{4\sqrt{5}} = 1 + 2\frac{\sqrt{3}}{\sqrt{5}} \) Let me know if you want to explore more of these!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy