Answer
Here are the simplified results for each expression:
1. \( \sqrt{12}+\sqrt{27}-\sqrt{3} = 4\sqrt{3} \)
2. \( \sqrt{18}-\sqrt{50}-\sqrt{32} = -6\sqrt{2} \)
3. \( \sqrt{6} \times \sqrt{3} = 3\sqrt{2} \)
4. \( \frac{\sqrt{75}}{\sqrt{3}} = 5 \)
5. \( (\sqrt{3}+\sqrt{12})^{2} = 27 \)
6. \( (\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{5}) = -2 \)
7. \( \sqrt{3}\left(\sqrt{12}-\sqrt{1 \frac{1}{3}}\right) = 4 \)
8. \( \frac{\sqrt{50}+\sqrt{2}}{\sqrt{18}} = 2 \)
9. \( \frac{6 \sqrt{8}+4 \sqrt{18}}{3 \sqrt{32}-\sqrt{72}} = 4 \)
10. \( \frac{2 \sqrt{12}+4 \sqrt{20}}{\sqrt{12}+\sqrt{80}} = 2 \)
Solution
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\sqrt{75}}{\sqrt{3}}\)
- step1: Simplify the root:
\(\frac{5\sqrt{3}}{\sqrt{3}}\)
- step2: Reduce the fraction:
\(5\)
Calculate or simplify the expression \( \sqrt(6)*\sqrt(3) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{6}\times \sqrt{3}\)
- step1: Use the properties of radicals:
\(\sqrt{6\times 3}\)
- step2: Calculate:
\(\sqrt{18}\)
- step3: Write as a product:
\(\sqrt{9\times 2}\)
- step4: Write in exponential form:
\(\sqrt{3^{2}\times 2}\)
- step5: Use the properties of radicals:
\(\sqrt{3^{2}}\times \sqrt{2}\)
- step6: Simplify the root:
\(3\sqrt{2}\)
Calculate or simplify the expression \( (\sqrt(3)+\sqrt(5))(\sqrt(3)-\sqrt(5)) \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)\)
- step1: Simplify the product:
\(\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}\)
- step2: Evaluate the power:
\(3-5\)
- step3: Subtract the numbers:
\(-2\)
Calculate or simplify the expression \( (\sqrt(3)+\sqrt(12))^2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\sqrt{3}+\sqrt{12}\right)^{2}\)
- step1: Simplify the root:
\(\left(\sqrt{3}+2\sqrt{3}\right)^{2}\)
- step2: Add the numbers:
\(\left(3\sqrt{3}\right)^{2}\)
- step3: Evaluate the power:
\(9\times 3\)
- step4: Multiply the numbers:
\(27\)
Calculate or simplify the expression \( \sqrt(12)+\sqrt(27)-\sqrt(3) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{12}+\sqrt{27}-\sqrt{3}\)
- step1: Simplify the root:
\(2\sqrt{3}+\sqrt{27}-\sqrt{3}\)
- step2: Simplify the root:
\(2\sqrt{3}+3\sqrt{3}-\sqrt{3}\)
- step3: Collect like terms:
\(\left(2+3-1\right)\sqrt{3}\)
- step4: Calculate:
\(4\sqrt{3}\)
Calculate or simplify the expression \( (\sqrt(50)+\sqrt(2))/\sqrt(18) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(\sqrt{50}+\sqrt{2}\right)}{\sqrt{18}}\)
- step1: Remove the parentheses:
\(\frac{\sqrt{50}+\sqrt{2}}{\sqrt{18}}\)
- step2: Simplify the root:
\(\frac{5\sqrt{2}+\sqrt{2}}{\sqrt{18}}\)
- step3: Simplify the root:
\(\frac{5\sqrt{2}+\sqrt{2}}{3\sqrt{2}}\)
- step4: Add the numbers:
\(\frac{6\sqrt{2}}{3\sqrt{2}}\)
- step5: Reduce the fraction:
\(2\)
Calculate or simplify the expression \( \sqrt(18)-\sqrt(50)-\sqrt(32) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{18}-\sqrt{50}-\sqrt{32}\)
- step1: Simplify the root:
\(3\sqrt{2}-\sqrt{50}-\sqrt{32}\)
- step2: Simplify the root:
\(3\sqrt{2}-5\sqrt{2}-\sqrt{32}\)
- step3: Simplify the root:
\(3\sqrt{2}-5\sqrt{2}-4\sqrt{2}\)
- step4: Collect like terms:
\(\left(3-5-4\right)\sqrt{2}\)
- step5: Subtract the numbers:
\(-6\sqrt{2}\)
Calculate or simplify the expression \( \sqrt(3)*(\sqrt(12)-\sqrt(1+1/3)) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{3}\times \left(\sqrt{12}-\sqrt{1+\frac{1}{3}}\right)\)
- step1: Simplify the root:
\(\sqrt{3}\times \left(2\sqrt{3}-\sqrt{1+\frac{1}{3}}\right)\)
- step2: Add the numbers:
\(\sqrt{3}\times \left(2\sqrt{3}-\sqrt{\frac{4}{3}}\right)\)
- step3: Simplify the root:
\(\sqrt{3}\times \left(2\sqrt{3}-\frac{2\sqrt{3}}{3}\right)\)
- step4: Subtract the numbers:
\(\sqrt{3}\times \frac{4\sqrt{3}}{3}\)
- step5: Multiply:
\(\frac{\sqrt{3}\times 4\sqrt{3}}{3}\)
- step6: Multiply:
\(\frac{12}{3}\)
- step7: Reduce the fraction:
\(4\)
Calculate or simplify the expression \( (2*\sqrt(12)+4*\sqrt(20))/(\sqrt(12)+\sqrt(80)) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(2\sqrt{12}+4\sqrt{20}\right)}{\left(\sqrt{12}+\sqrt{80}\right)}\)
- step1: Remove the parentheses:
\(\frac{2\sqrt{12}+4\sqrt{20}}{\sqrt{12}+\sqrt{80}}\)
- step2: Simplify the root:
\(\frac{2\times 2\sqrt{3}+4\sqrt{20}}{\sqrt{12}+\sqrt{80}}\)
- step3: Simplify the root:
\(\frac{2\times 2\sqrt{3}+4\times 2\sqrt{5}}{\sqrt{12}+\sqrt{80}}\)
- step4: Multiply the terms:
\(\frac{4\sqrt{3}+4\times 2\sqrt{5}}{\sqrt{12}+\sqrt{80}}\)
- step5: Multiply the terms:
\(\frac{4\sqrt{3}+8\sqrt{5}}{\sqrt{12}+\sqrt{80}}\)
- step6: Simplify the root:
\(\frac{4\sqrt{3}+8\sqrt{5}}{2\sqrt{3}+\sqrt{80}}\)
- step7: Simplify the root:
\(\frac{4\sqrt{3}+8\sqrt{5}}{2\sqrt{3}+4\sqrt{5}}\)
- step8: Rewrite the expression:
\(\frac{\left(2\sqrt{3}+4\sqrt{5}\right)\times 2}{2\sqrt{3}+4\sqrt{5}}\)
- step9: Reduce the fraction:
\(2\)
Calculate or simplify the expression \( (6*\sqrt(8)+4*\sqrt(18))/(3*\sqrt(32)-\sqrt(72)) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(6\sqrt{8}+4\sqrt{18}\right)}{\left(3\sqrt{32}-\sqrt{72}\right)}\)
- step1: Remove the parentheses:
\(\frac{6\sqrt{8}+4\sqrt{18}}{3\sqrt{32}-\sqrt{72}}\)
- step2: Simplify the root:
\(\frac{6\times 2\sqrt{2}+4\sqrt{18}}{3\sqrt{32}-\sqrt{72}}\)
- step3: Simplify the root:
\(\frac{6\times 2\sqrt{2}+4\times 3\sqrt{2}}{3\sqrt{32}-\sqrt{72}}\)
- step4: Simplify the root:
\(\frac{6\times 2\sqrt{2}+4\times 3\sqrt{2}}{3\times 4\sqrt{2}-\sqrt{72}}\)
- step5: Multiply the terms:
\(\frac{12\sqrt{2}+4\times 3\sqrt{2}}{3\times 4\sqrt{2}-\sqrt{72}}\)
- step6: Multiply the terms:
\(\frac{12\sqrt{2}+12\sqrt{2}}{3\times 4\sqrt{2}-\sqrt{72}}\)
- step7: Simplify the root:
\(\frac{12\sqrt{2}+12\sqrt{2}}{3\times 4\sqrt{2}-6\sqrt{2}}\)
- step8: Multiply the terms:
\(\frac{12\sqrt{2}+12\sqrt{2}}{12\sqrt{2}-6\sqrt{2}}\)
- step9: Add the numbers:
\(\frac{24\sqrt{2}}{12\sqrt{2}-6\sqrt{2}}\)
- step10: Subtract the numbers:
\(\frac{24\sqrt{2}}{6\sqrt{2}}\)
- step11: Reduce the fraction:
\(4\)
Here are the simplified results for each expression:
1. **Expression:** \( \sqrt{12}+\sqrt{27}-\sqrt{3} \)
**Simplified Result:** \( 4\sqrt{3} \)
2. **Expression:** \( \sqrt{18}-\sqrt{50}-\sqrt{32} \)
**Simplified Result:** \( -6\sqrt{2} \)
3. **Expression:** \( \sqrt{6} \times \sqrt{3} \)
**Simplified Result:** \( 3\sqrt{2} \)
4. **Expression:** \( \frac{\sqrt{75}}{\sqrt{3}} \)
**Simplified Result:** \( 5 \)
5. **Expression:** \( (\sqrt{3}+\sqrt{12})^{2} \)
**Simplified Result:** \( 27 \)
6. **Expression:** \( (\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{5}) \)
**Simplified Result:** \( -2 \)
7. **Expression:** \( \sqrt{3}\left(\sqrt{12}-\sqrt{1 \frac{1}{3}}\right) \)
**Simplified Result:** \( 4 \)
8. **Expression:** \( \frac{\sqrt{50}+\sqrt{2}}{\sqrt{18}} \)
**Simplified Result:** \( 2 \)
9. **Expression:** \( \frac{6 \sqrt{8}+4 \sqrt{18}}{3 \sqrt{32}-\sqrt{72}} \)
**Simplified Result:** \( 4 \)
10. **Expression:** \( \frac{2 \sqrt{12}+4 \sqrt{20}}{\sqrt{12}+\sqrt{80}} \)
**Simplified Result:** \( 2 \)
If you need further explanations or details on any specific step, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution