(a) Find the volume of the parallelopiped whose coterminus edges are given by the vectors \( \vec{A}=2 \vec{i}- \) \( 3 \vec{j}+4 \vec{k}, \vec{B}=\vec{i}+2 \vec{j}-\vec{k} \) and \( \vec{C}=3 \vec{i}-\vec{j}+2 \vec{k} \). (b) i. If \( \vec{F} \) is a conservative field, prove that curl \( \vec{F}=\nabla \times \vec{F}=\overrightarrow{0} \) (i.e., \( \vec{F} \) is irrotational). (2 marks) ii. Conversely, if \( \nabla \times \vec{F}=\overrightarrow{0} \) (i.e., \( \vec{F} \) is irrotational), prove that \( \vec{F} \) is conservative. (c) If \( \phi=2 x y z^{2}, \quad \vec{F}=x y \vec{i}-z \vec{j}+x^{2} \vec{k} \) and C is the curve \( x=t^{2} . \quad y=2 t . \quad z=t^{3} \) from \( t=0 \)
Upstudy ThothAI Solution
Quick Answer
Step-by-step Solution
Enter your question here…