First, determine the quadrant for \( \theta \) ; then find \( x , y \) , and \( r \) ; and finally, give all six trigonometric ratios for \( \theta \) given the following information: \(\sin ( \theta ) = - \frac { 9 } { 19 } \) and \( \cos ( \theta ) < 0\) \(\theta \) lives in quadrant- \(x = \) - \(y = \) - \(r= \)1. \(\sin ( \theta ) = \) 2. \(\cos ( \theta ) = \) 3. \(\tan ( \theta ) = \) 4. \(\sec ( \theta ) = \) 5. \(\csc ( \theta ) = \) 6. \(\cot ( \theta ) = \)
Real Tutor Solution
Quick Answer
1). sin\(\theta \) = -9/19
2). cos\(\theta \)= -2\(\sqrt { 70} /19\)
3). tan \(\theta \)= \(9/2\sqrt { 70} \)
4). sec \(\theta \)= \(19/2\sqrt { 70} \)
5). cosec \(\theta \)= 19/9
6). cot \(\theta \)= \(2\sqrt { 70} /9\)
Enter your question here…