Q:
o. \( 5 x^{3}-3-2 x^{3} \)
q. \( x-9 x \)
r. \( 6 x y^{2}+2 x^{2} y-x y^{2}+3 x^{4} \)
s. \( 2 x^{2}-6 x+3 x+4 x^{2} \)
t. \( \frac{9}{7} x^{3} y-2 x y^{3}+\frac{1}{7} y x^{3} \)
u. \( 5 x^{3}+6 x^{3}+4 \)
v. \( 2 m n^{2}-3 m^{2} n-5 m^{2} n^{2}+4 m n^{2} \)
w. \( 6 x^{4}-3 x^{4}+7 \)
x. \( \frac{5}{4} x^{3}-\frac{3}{5} x^{3}+5 x^{3} \)
y. \( 6 x^{2}+5 x y^{2}+2 x^{2}-3 x y^{2} \)
Q:
Oorweeg die getalpatroon:
3.1.1 Toon aan dat hierdie reeks getalle 'n lineêre getalpatroon voorstel.
3.1.2 Bepaal die algemene reēl \( \left(T_{n}\right) \) van hierdie getalpatroon.
3.1.3 Bepaal watter term in die getalpatroon gelyk sal wees aan -61.
3.1.4 Bepaal \( T_{5} \)
3.1.5 Bepaal \( T_{5} \) en \( T_{55} \).
Q:
Los op vir \( x \) :
\( \begin{array}{ll}2.1 .1 & 5(x+3)^{2}=125 \\ 2.1 .2 & 7 x^{2}=x \\ 2.1 .3 & 4^{x}=0,125\end{array} \)
Q:
Oorweeg die getalpatroon:
3.1.1 Toon aan dat hierdie reeks getalle 'n lineêre getalpatroon voorstel.
3.1.2 Bepaal die algemene reël \( \left(T_{n}\right) \) van hierdie getalpatroon.
3.1.3 Bepaal watter term in die getalpatroon gelyk sal wees aan -61.
3.1.4 Bepaal \( T_{5} \)
3.1.5 Bepaal \( T_{5} \) en \( T_{55} \).
Q:
a. \( 2 x-5 x \)
b. \( 6 x^{4}-3 x^{4}+7 \)
c. \( 3 a^{4}-2 a+2 a+a^{4} \)
d. \( 2 a b^{2}+3 a b-5 a^{2} b+4 a b^{2} \)
e. \( x^{3}-5 x-2 x^{3} \)
f. \( -3 x^{4}-6 x^{4}+5 \)
g. \( -7 m^{2} n^{2}+2 m n-2 m^{2} n^{2} \)
h. \( 2 x^{2}+8 x^{2} \)
i. \( 19 x^{4}-6 x^{4}+4 x^{2} \)
j. \( 2 h^{3}-3 h^{2}-6 h^{3} \)
k. \( -a^{4}-a+\frac{7 a y+a^{4}}{2}-\frac{2}{4} p^{3} n+5 p^{3} \)
Q:
Classify by number of terms:
\[ 3 x^{3}-6 x \]
Q:
2) \( 9=-7 m+1-6 \)
Q:
\( 2 x^{2} \) Factornse
Q:
9. \( -3 x+6 \)
h. \( 5 x^{2}+3 x+3 \)
i. \( 5 x^{4}+x^{2}-x+2 \)
j. \( 8 x-3 x^{2}+9-8 x^{3} \)
k. \( 5 x^{4} y-x^{2} y-x+2 \)
l. \( 7 x^{3} y-4 x^{2}-4 x y+5 \)
Q:
1) Resolver \( 2 x^{2}-3 x+1>0 \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit