girl-logo

Ask Questions

Calculus Questions & Answers

Q:
2. Sea \( f(x)=4 x^{2}-x+5 \) y \( g(x)=2 x^{3}-x \). Encuentra la derivada de \( h(x)=\frac{f(x)}{g(x)} \)
Q:
4. (10 points) Find all relative and absolute extrema of the function \[ f(t)=\frac{1}{2} t^{4}+\frac{10}{3} t^{3} \] with domain \( (-\infty,+\infty) \). Then the same function with domain \( [-2,+\infty) \)
Q:
Question Evaluate the following limit using L'Hospital's rule. \[ \lim _{x \rightarrow 0^{+}}(6 x)^{\left(\frac{1}{7 \ln (3 x)}\right)} \]
Q:
Question Evaluate the following limit using L'Hospital's rule. \[ \lim _{x \rightarrow 1}\left[\frac{2}{6 \ln (x)}-\frac{2}{6 x-6}\right] \] Provide an exact answer.
Q:
1. Dadas las funciones \( f(x)=x^{3}+2 x-1 \) y \( g(x)=x^{2}+1 \), calcula la derivada de \( h(x) \) \( \frac{f(x)}{g(x)} \).
Q:
Question Evaluate the following limit using L'Hospital's rule. \[ \lim _{x \rightarrow 0^{-}}\left(\frac{-7}{x}+\frac{1}{\sin (6 x)}\right) \]
Q:
An object with initial temperature \( 160^{\circ} \mathrm{F} \) is submerged in large tank of water whose temperature is \( 70^{\circ} \mathrm{F} \). Find a formula for \( F(t) \), the temperature of the object after \( t \) minutes, if the cooling constant is \( k=-1.4 \) \( F(t)=\square \)
Q:
3. Sea \( f(x)=x^{5}+3 x^{2} \) y \( g(x)=4 x-x^{2} \). Determina la derivada de \( h(x)=f(x) \cdot g(x) \)
Q:
Question Evaluate the following limit using L'Hospital's rule. \[ \lim _{x \rightarrow 12^{+}}\left[\frac{168}{5 x^{2}-85 x+300}-\frac{2 x}{5 x-60}\right] \] Provide an exact answer.
Q:
Question Evaluate the following limit using L'Hospital's rule. \[ \lim _{x \rightarrow 0^{+}}\left(\frac{-10}{x}+\frac{2}{\sin (5 x)}\right) \]

Test your knowledge on Calculus!

Select the correct answer and check your answer

2 3 4 5 6 7 8 9 10 11
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions