Q:
A cectain trangülizer decays exponentially in
the bloodstream and has a half-life of 22
hours. How long with it take for the drug
to decuy to \( 82 \% \) of the original dose?
a) step 1: Find \( K \) (Rovad to four decinal pleces)
b) step 2 : Use \( k \) to determine how longlinhouns)
it will take for the drug to decay to \( 82 \% \) of
the original dose. (Round to one decina/place)
Q:
\( \int \frac { 2 x ^ { 3 } - 4 x - 8 } { x ( x - 1 ) ( x ^ { 2 } + 4 ) } d x \)
Q:
The function \( A=A_{0} e^{-0.01155 x} \) models
the amount of a particular radioactive
material stored in a concrete vault, where
\( x \) is a number of years since the
material wis put into the vault. Suppose
400 pounds of the material are initally
put into the vault. Ansuer the folloving
questions:
a) How many pounds will be left after
130 years? (Round to nearest whole number)
b) After how many yews will there be 50 pounds
remaining? (Round to newest whole number)
Q:
The function \( A=A_{0} e^{-0.01155 x} \) models
the amount of a particular radioactive
material stored in a concrete vault, where
\( x \) is a number of years since the
material wes put into the vault. Suppose
400 pounds of the material are initally
put into the vault. Ansuer the folloving
questions:
a) How many pounds will be left after
130 years? (Round to nearest whole number)
b) After how many yews will there be 50 pounds
remaining? (Round to newast whole number)
Q:
Approximate the area under the graph of \( f(x) \) and above the \( x \)-axis using \( n \) rectangles.
\( f(x)=25-x^{2} \) from \( x=-5 \) to \( x=5 ; n=2 \); use midpoints
A. 62.5
B. 93.75
C. 187.5
D. 10
Q:
Find the general solution for the differential equation.
\( y \frac{d y}{d x}=x^{2}-7 x \)
A. \( y=\frac{2}{3} x^{3}-7 x^{2}+C \)
B. \( y=\frac{1}{3} x^{3}-7 x+C \)
C. \( y^{2}=\frac{1}{3} x^{3}-7 x^{2}+C \)
D. \( y^{2}=\frac{2}{3} x^{3}-7 x^{2}+C \)
Q:
Find the general solution for the differential equation.
\( y \frac{d y}{d x}=x^{2}-7 x \)
A. \( y=\frac{2}{3} x^{3}-7 x^{2}+C \)
B. \( y=\frac{1}{3} x^{3}-7 x+C \)
C. \( y^{2}=\frac{1}{3} x^{3}-7 x^{2}+C \)
D. \( y^{2}=\frac{2}{3} x^{3}-7 x^{2}+C \)
Q:
Find the general solution for the differential equation.
\( y \frac{d y}{d x}=x^{2}-7 x \)
Q:
El material de la base de una caja abierta cuesta 1.5 veces lo que cuesta el de los laterales
Hallar las dimensiones de la caja de volumen maximo que se puede construir con un costo
fijo considere que \( v=x y z ; \quad c=1.5 x y+2 x z+2 y z \)
Q:
Find the integral.
\( \int 3 x^{-3} d x \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit