Q:
\( a _ { n } ) : 1 , \frac { 1 } { 1 + 2 } , \frac { 1 } { 1 + 2 + 3 } , \cdots , \frac { 1 } { 1 + 2 + 3 + \cdots + n } \)
Q:
Identifica la asíntota horizontal de la función \( f(x) = 3^{x} - 5 \).
Q:
Ecrire sous forme des intervalles les ensembles suivants :
\( \left\{x \in \mathbb{R} / \frac{-3}{2} \leq x \leq \frac{-1}{2}\right\} ; J=\left\{x \in \mathbb{R} / x<\frac{-3}{2}\right\} ; M=\left\{x \in \mathbb{R} /-4<x \leq \frac{1}{2}\right\} ; L=\{x \in \mathbb{R} / x \geq-2\} \)
Déterminer \( I \cap J \) et \( I \cup J \) dans les cas suivants :
\( =] 1 ; 4] ; J=[-1 ; 3[\quad ; \quad \) b) \( I=]-\infty ; 2] ; J=]-2 ;+\infty[ \)
\( =]-1 ;+\infty[; J=]-\infty ;-2] \quad \); d) \( I=\mathbb{R} ; \quad J=\mathbb{R}: \)
Q:
3.3 The following sequence forms a convergent geometric sequence:
\( \frac{3}{(x-1)^{2}}+\frac{1}{(x-1)}+\frac{1}{3}+\frac{(x-1)}{9}+\ldots \)
3.3 .1 Determine the possible values of \( x \).
\( 3.3 .2 \quad \) If \( x=2 \), calculate \( S_{\infty} \)
Q:
Sketch on the same set of axes the graphs of \( f(x)=-2 x^{2}-4 x+6 \) and \( g(x)=-2 \cdot 2^{x-1}+1 \)
Clearly indicate all intercepts with the axes, turning point(s) and asymptote(s).
Q:
\( 9 + \sum _ { j = - 2 } ^ { 4 } j ^ { 3 } \)
Q:
If a virus spreads at a rate that can be modeled by
the exponential function \( A(t)=a^{r t} \), how many
people will be infected after 5 days if initially 3
people are infected and the growth rate is \( 40 \% \) ?
(Use your calculator for a precise version of e. If
you are not able to use a calculator, you can
approximate e as 2.718 . Round your anșwer to the
nearest person.)
Q:
¿Cómo se define el factor de crecimiento en una función exponencial?
Q:
What is the y-intercept of the exponential function \( f(x) = 2^x \)?
Q:
3.3 The following sequence forms a convergent geometric sequence:
\( \frac{3}{(x-1)^{2}}+\frac{1}{(x-1)}+\frac{1}{3}+\frac{(x-1)}{9}+\ldots \)
3.3.1 Determine the possible values of x .
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit