Q:
Question 9 (1 point)
Compared to the graph of \( f(x)=\sqrt{x+2} \), the graph \( g(x)=\sqrt{2-x} \) is a
A) reflection in the \( x \) - and \( y \)-axes
B) reflection in the \( x \)-axis
Q:
Question 8 (1 point)
Which choice best describes the combination of transformations that mus
applied to the graph of \( f(x)=\sqrt{x} \) to obtain the graph of \( g(x)=2 \sqrt{x-4} \) ?
Q:
Question 7 (1 point)
Compared to the graph of the function \( f(x)=\frac{1}{x} \), the graph of the function \( g(x)=\frac{1}{x-1} \) is
translated
A) 1 unit up
B) 1 unit to the right
C) 1 unit down
D) 1 unit to the left
Q:
(1) EJercitación. Trazar la gráfica de cada funcion. Determinar su dominio y su rango
es creciente, decreciente y constante.
\( \begin{array}{ll}\text { 1. } f(x)=\left\{\begin{array}{ll}x+1 & \text { si } x>0 \\ -2 x-3 & \text { si } x \leq 0\end{array}\right. \\ \text { 4. } f(x)=\left\{\begin{array}{ll}x+2 & \text { si } x<-1 \\ x+4 & \text { si } x>-1 \\ x^{2} & \text { si } x>1 \\ x^{3} & \text { si } x \leq 1\end{array}\right. \\ \begin{array}{ll}x+2 & \text { si } x=-1\end{array} & \text { 5. } f(x)=\left\{\begin{array}{ll}(x-1)^{2} & \text { si } x>2 \\ x+2 & \text { si } x \leq 2\end{array}\right.\end{array} \)
Q:
(4 of 10)
The graph \( f(x) \) is transformed by the following sequence.
1. Shift right 5 units
2. Reflect over \( y \)-axis
3. Shift down 8 units
\( \begin{array}{l}y=-f(x-5)-8 \\ y=-f(x+5)-8 \\ y=f(-x+5)-8 \\ \text { Which is an equation for the new graph? } \\ \begin{array}{l}y \\ y\end{array}\end{array} \)
Q:
HALLAR EL DOMINIO DE \( F(x)=\sqrt{L N(x-S)} \)
Q:
13. Dada la función \( f(x)=\log _{2} x \)
Sin utilizar tablas de valores dibuja las
funciones:
\( g(x)=3+\log _{2} x \)
\( h(x)=-1+\log _{2} x \)
\( m(x)=\log _{2}(x+2) \)
\( f(x)=\log _{2}(x-4) \)
Q:
\( i + i ^ { 2 } + i ^ { 3 } + \ldots + i ^ { 2023 } \)
Q:
Given the function \( f(x)=3 x^{2}+5, x \geq 0 \), determine if \( f(x) \) is one-to-one. If it is, find a formula for the inverse.
Is \( f(x) \) one-to-one?
No
\( f^{-1}(x)=\square \)
Yes
Type an exact answer, using radicals as needed.)
Q:
Use the graph of \( f(x) \) to determine whether the function is one-to-one. If it is, find a formula for its inverse.
\( f(x)=\frac{x+7}{x-5} \)
Is the function one-to-one?
No 2
Yes
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit