girl-logo

Ask Questions

Pre Calculus Questions & Answers

Q:
Question 9 (1 point) Compared to the graph of \( f(x)=\sqrt{x+2} \), the graph \( g(x)=\sqrt{2-x} \) is a A) reflection in the \( x \) - and \( y \)-axes B) reflection in the \( x \)-axis
Q:
Question 8 (1 point) Which choice best describes the combination of transformations that mus applied to the graph of \( f(x)=\sqrt{x} \) to obtain the graph of \( g(x)=2 \sqrt{x-4} \) ?
Q:
Question 7 (1 point) Compared to the graph of the function \( f(x)=\frac{1}{x} \), the graph of the function \( g(x)=\frac{1}{x-1} \) is translated A) 1 unit up B) 1 unit to the right C) 1 unit down D) 1 unit to the left
Q:
(1) EJercitación. Trazar la gráfica de cada funcion. Determinar su dominio y su rango es creciente, decreciente y constante. \( \begin{array}{ll}\text { 1. } f(x)=\left\{\begin{array}{ll}x+1 & \text { si } x>0 \\ -2 x-3 & \text { si } x \leq 0\end{array}\right. \\ \text { 4. } f(x)=\left\{\begin{array}{ll}x+2 & \text { si } x<-1 \\ x+4 & \text { si } x>-1 \\ x^{2} & \text { si } x>1 \\ x^{3} & \text { si } x \leq 1\end{array}\right. \\ \begin{array}{ll}x+2 & \text { si } x=-1\end{array} & \text { 5. } f(x)=\left\{\begin{array}{ll}(x-1)^{2} & \text { si } x>2 \\ x+2 & \text { si } x \leq 2\end{array}\right.\end{array} \)
Q:
(4 of 10) The graph \( f(x) \) is transformed by the following sequence. 1. Shift right 5 units 2. Reflect over \( y \)-axis 3. Shift down 8 units \( \begin{array}{l}y=-f(x-5)-8 \\ y=-f(x+5)-8 \\ y=f(-x+5)-8 \\ \text { Which is an equation for the new graph? } \\ \begin{array}{l}y \\ y\end{array}\end{array} \)
Q:
HALLAR EL DOMINIO DE \( F(x)=\sqrt{L N(x-S)} \)
Q:
13. Dada la función \( f(x)=\log _{2} x \) Sin utilizar tablas de valores dibuja las funciones: \( g(x)=3+\log _{2} x \) \( h(x)=-1+\log _{2} x \) \( m(x)=\log _{2}(x+2) \) \( f(x)=\log _{2}(x-4) \)
Q:
\( i + i ^ { 2 } + i ^ { 3 } + \ldots + i ^ { 2023 } \)
Q:
Given the function \( f(x)=3 x^{2}+5, x \geq 0 \), determine if \( f(x) \) is one-to-one. If it is, find a formula for the inverse. Is \( f(x) \) one-to-one? No \( f^{-1}(x)=\square \) Yes Type an exact answer, using radicals as needed.)
Q:
Use the graph of \( f(x) \) to determine whether the function is one-to-one. If it is, find a formula for its inverse. \( f(x)=\frac{x+7}{x-5} \) Is the function one-to-one? No 2 Yes

Test your knowledge on Pre Calculus!

Select the correct answer and check your answer

18 19 20 21 22 23 24 25 26 27
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions