Q:
Graph the function. Plot all necessary asymptotes. For vertical asymptotes, make sure there are at least two points on each side.
\[ k(x)=\frac{3 x-9}{x+2} \]
Q:
\( g(x)=\left(\frac{4}{5}\right)^{x-2}+9 \)
a) Choose the correct parent function.
O \( y=\left(\frac{5}{4}\right)^{x} \)
\( y=\left(\frac{4}{5}\right)^{x} \)
\( y=\log _{\frac{5}{4}}(x) \)
\( y=\log _{\frac{4}{5}}(x) \)
b) Choose the correct transformation (Reflections).
Select an answer
c) Choose the correct transformation (Stretches/Compressions).
Select an answer
d) Choose the correct transformation (Vertical Shifts).
Select an answer
e) Choose the correct transformation (Horizontal Shifts).
Select an answer
Q:
a) Choose the correct parent function.
\( y=2^{x} \)
\( y=\left(\frac{1}{2}\right)^{x} \)
\( y=\log _{2}(x) \)
\( y=\log _{\frac{1}{2}}(x) \)
b) Choose the correct transformation (Reflections).
Select an answer
c) Choose the correct transformation (Stretches/Compressions).
Select an answer
d) Choose the correct transformation (Vertical Shifts).
Select an answer
e) Choose the correct transformation (Horizontal Shifts).
Select an answer
Q:
A wooden artifact from an ancient tomb contains 40 percent of the carbon-14 that is present in living trees.
How long ago, to the nearest year, was the artifact made? (The half-life of carbon-14 is 5730 years.)
years
Q:
For the graph of \( y=f(x) \), where
\[ f(x)=\frac{2 x-7}{x^{2}-25} \]
(a) Identify the \( x \)-intercepts.
(b) Identify the vertical asymptotes.
(c) Identify the horizontal asymptotes or slant asymptote if applicable.
(d) Identify the \( y \)-intercept.
Q:
La parametrización \( (1+3 \operatorname{Cos}(2 \mathrm{t}), 2+3 \operatorname{Sen}(2 \mathrm{t})) \)
satisface el enunciado siguiente: Parametriza la
trayectoria de un punto que gira en un círculo de
radio 3 y centro en \( (1,2) \), partiendo del punto mas
bajo y moviéndose en la dirección contraria a las
manecillas del reloj con |rapidez constante 2.
Q:
For the graph of \( y=f(x) \), where
\[ f(x)=\frac{(3 x+5)(x+7)}{(x-1)(2 x-3)} \]
(a) Identify the \( x \)-intercepts.
(b) Identify any vertical asymptotes.
(c) Identify the horizontal asymptote or slant asymptote if applicable.
(d) Identify the \( y \)-intercept.
Q:
Find an equation of a function that meets the given conditions.
\[ \begin{array}{l}x \text {-intercepts: }(-5,0) \text { and }(-2,0) \\ \text { vertical asymptote: } x=2 \\ \text { horizontal asymptote: } y=1 \\ y \text {-intercept: }\left(0, \frac{5}{2}\right)\end{array} \]
Q:
Draw the graph of \( f(x)=\left(\frac{1}{4}\right)^{x+5} \)
Q:
Determine the vertical asymptotes of the graph of the function.
\[ f(x)=\frac{x+4}{2 x^{2}-11 x+5} \]
Separate multiple equations with commas as necessary. Select "
Equation(s) of the vertical asymptote(s):
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit